
SOFTWARE ENGINEERING

LECTURE -10

29/01/21

Structured analysis is used to carry out the top-down decomposition of a set

of high-level functions present in the problem description and to represent

them graphically. During structured analysis, functional decomposition of

the system is achieved. That is, each function that the system performs is

analyzed and hierarchically decomposed into more detailed functions.

Structured analysis technique is based on the following essential underlying

principles: • Top-down decomposition approach. • Divide and conquer

principle. Each function is decomposed independently. • Graphical

representation of the analysis results using Data Flow Diagrams (DFDs).

STRUCTURED ANALYSIS

The DFD (also known as a bubble chart) is a hierarchical graphical model of

a system that shows the different processing activities or functions that the

system performs and the data interchange among these functions. Each

function is considered as a processing station (or process) that consumes

some input data and produces some output data. The system is

represented in terms of the input data to the system, various processing

carried out on these data, and the output data generated by the system. A

DFD model uses a very limited number of primitive symbols [as shown in

fig. 5.1(a)] to represent the functions performed by a system and the data

flow among these functions

DATA FLOW DIAGRAM (DFD)

The main reason why the DFD technique is so popular is probably because

of the fact that DFD is a very simple formalism – it is simple to understand

and use. Starting with a set of high-level functions that a system performs, a

DFD model hierarchically represents various sub-functions. In fact, any

hierarchical model is simple to understand. Human mind is such that it can

easily understand any hierarchical model of a system – because in a

hierarchical model, starting with a very simple and abstract model of a

system, different details of the system are slowly introduced through

different hierarchies. The data flow diagramming technique also follows a

very simple set of intuitive concepts and rules. DFD is an elegant modeling

technique that turns out to be useful not only to represent the results of

structured analysis of a software problem, but also for several other

applications such as showing the flow of documents or items in an

organization.

IMPORTANCE OF DFDS IN A GOOD SOFTWARE DESIGN

Data dictionary A data dictionary lists all data items appearing in the DFD model of a system. The data items

listed include all data flows and the contents of all data stores appearing on the DFDs in the DFD model of a

system. A data dictionary lists the purpose of all data items and the definition of all composite data items in

terms of their component data items. For example, a data dictionary entry may represent that the data grossPay

consists of the components regularPay and overtimePay.

 GROSSPAY = REGULARPAY + OVERTIMEPAY

For the smallest units of data items, the data dictionary lists their name and their type. Composite data items can

be defined in terms of primitive data items using the following data definition operators:

 +: denotes composition of two data items, e.g. a+b represents data a and b.

 [,,]: represents selection, i.e. any one of the data items listed in the brackets can occur. For example, [a,b]

represents either a occurs or b occurs.

 (): the contents inside the bracket represent optional data which may or may not appear. e.g. a+(b) represents

either a occurs or a+b occurs.

{}: represents iterative data definition, e.g. {name}5 represents five name data. {name}* represents zero or more

instances of name data.

 =: represents equivalence, e.g. a=b+c means that a represents b and c.

 /* */: Anything appearing within /* and */ is considered as a comment.

Example 1: Tic-Tac-Toe Computer Game Tic-tac-toe is a computer game in which a

human player and the computer make alternative moves on a 3×3 square. A move

consists of marking previously unmarked square. The player who first places three

consecutive marks along a straight line on the square (i.e. along a row, column, or

diagonal) wins the game. As soon as either the human player or the computer wins,

a message congratulating the winner should be displayed. If neither player manages

to get three consecutive marks along a straight line, but all the squares on the

board are filled up, then the game is drawn. The computer always tries to win a

game.

It may be recalled that the DFD model of a system typically consists of several

DFDs: level 0, level 1, etc. However, a single data dictionary should capture all the

data appearing in all the DFDs constituting the model. Figure 5.2 represents the

level 0 and level 1 DFDs for the tic-tactoe game. The data dictionary for the model

is given below. Data dictionary for the DFD model in Example 1

move: integer /*number between 1 and 9 */

display: game+result

 game: board

 board: {integer}9

 result: [“computer won”, “human won” “draw”]

A data dictionary plays a very important role in any software

development process because of the following reasons: • A

data dictionary provides a standard terminology for all

relevant data for use by the engineers working in a project. A

consistent vocabulary for data items is very important, since

in large projects different engineers of the project have a

tendency to use different terms to refer to the same data,

which unnecessary causes confusion. • The data dictionary

provides the analyst with a means to determine the

definition of different data structures in terms of their

component elements.

IMPORTANCE OF DATA DICTIONARY

The data that flow into or out of a bubble must match the

data flow at the next level of DFD. This is known as balancing

a DFD. The concept of balancing a DFD has been illustrated in

fig. 5.3. In the level 1 of the DFD, data items d1 and d3 flow

out of the bubble 0.1 and the data item d2 flows into the

bubble 0.1. In the next level, bubble 0.1 is decomposed. The

decomposition is balanced, as d1 and d3 flow out of the level

2 diagram and d2 flows in.

 BALANCING A DFD

The context diagram is the most abstract data flow representation of a system. It represents the entire

system as a single bubble. This bubble is labeled according to the main function of the system. The

various external entities with which the system interacts and the data flow occurring between the

system and the external entities are also represented. The data input to the system and the data output

from the system are represented as incoming and outgoing arrows. These data flow arrows should be

annotated with the corresponding data names. The name ‘context diagram’ is well justified because it
represents the context in which the system is to exist, i.e. the external entities who would interact with

the system and the specific data items they would be supplying the system and the data items they

would be receiving from the system. The context diagram is also called as the level 0 DFD.

To develop the context diagram of the system, it is required to analyze the SRS document to identify the

different types of users who would be using the system and the kinds of data they would be inputting to

the system and the data they would be receiving the system. Here, the term “users of the system” also
includes the external systems which supply data to or receive data from the system.

The bubble in the context diagram is annotated with the name of the software system being developed

(usually a noun). This is in contrast with the bubbles in all other levels which are annotated with verbs.

This is expected since the purpose of the context diagram is to capture the context of the system rather

than its functionality

 CONTEXT DIAGRAM

RMS Calculating Software. A software system called RMS calculating software would read

three integral numbers from the user in the range of -1000 and +1000 and then determine the

root mean square (rms) of the three input numbers and display it. In this

Level 1 DFD:- To develop the level 1 DFD, examine the high-level functional requirements. If

there are between 3 to 7 high-level functional requirements, then these can be directly

represented as bubbles in the level 1 DFD. We can then examine the

input data to these functions and the data output by these functions and represent them

appropriately in the diagram. If a system has more than 7 high-level functional requirements,

then some of the related requirements have to be combined and represented in the form of a

bubble in the level 1 DFD. Such a bubble can be split in the lower DFD levels. If a system has

less than three high-level functional requirements, then some of them need to be split into

their sub-functions so that we have roughly about 5 to 7 bubbles on the diagram.

Decomposition:- Each bubble in the DFD represents a function performed by the system. The

bubbles are decomposed into sub-functions at the successive levels of the DFD. Decomposition

of a bubble is also known as factoring or exploding a bubble. Each bubble at any level of DFD is

usually decomposed to anything between 3 to 7 bubbles. Too few bubbles at any level make

that level superfluous. For example, if a bubble is decomposed to just one bubble or two

bubbles, then this decomposition becomes redundant. Also, too many bubbles, i.e. more than

7 bubbles at any level of a DFD makes the DFD model hard to understand. Decomposition of a

bubble should be carried on until a level is reached at which the function of the bubble can be

described using a simple algorithm.

Numbering of Bubbles:- It is necessary to number the different bubbles occurring in the

DFD. These numbers help in uniquely identifying any bubble in the DFD by its bubble

number. The bubble at the context level is usually assigned the number 0 to indicate that it

is the 0 level DFD. Bubbles at level 1 are numbered, 0.1, 0.2, 0.3, etc, etc. When a bubble

numbered x is decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this

numbering scheme, by looking at the number of a bubble we can unambiguously determine

its level, its ancestors, and its successors.

 Example:- A supermarket needs to develop the following software to encourage regular

customers. For this, the customer needs to supply his/her residence address, telephone

number, and the driving license number. Each customer who registers for this scheme is

assigned a unique customer number (CN) by the computer. A customer can present his CN

to the check out staff when he makes any purchase. In this case, the value of his purchase is

credited against his CN. At the end of each year, the supermarket intends to award surprise

gifts to 10 customers who make the highest total purchase over the year. Also, it intends to

award a 22 caret gold coin to every customer whose purchase exceeded Rs.10,000. The

entries against the CN are the reset on the day of every year after the prize winners’ lists
are generated.

Commonly made errors while constructing a DFD model Although DFDs are simple to

understand and draw, students and practitioners alike encounter similar types of problems

while modelling software problems using DFDs. While learning from experience is powerful

thing, it is an expensive pedagogical technique in the business world. It is therefore helpful

to understand the different types of mistakes that users usually make while constructing the

DFD model of systems

• Many beginners commit the mistake of drawing more than one bubble in the context
diagram. A context diagram should depict the system as a single bubble

• Many beginners have external entities appearing at all levels of DFDs. All external
entities interacting with the system should be represented only in the context diagram.

The external entities should not appear at other levels of the DFD

• It is a common oversight to have either too less or too many bubbles in a DFD. Only
3 to 7 bubbles per diagram should be allowed, i.e. each bubble should be

decomposed to between 3 and 7 bubbles

• Many beginners leave different levels of DFD unbalanced.

 • A common mistake committed by many beginners while developing a DFD model is

attempting to represent control information in a DFD. It is important to realize that a

DFD is the data flow representation of a system, and it does not represent control

information. For an example mistake of this kind:

data that flows between bubbles A and B or bubbles A and C and not the

conditions depending on which the two modules are invoked.

 • A data store should be connected only to bubbles through data arrows. A

data store cannot be connected to another data store or to an external entity.

• All the functionalities of the system must be captured by the DFD model.

No function of the system specified in its SRS document should be

overlooked.

• Only those functions of the system specified in the SRS document should be

represented, i.e. the designer should not assume functionality of the system

not specified by the SRS document and then try to represent them in the

DFD.

• Improper or unsatisfactory data dictionary.

• The data and function names must be intuitive. Some students and even

practicing engineers use symbolic data names such a, b, c, etc. Such names

hinder understanding the DFD model.

Shortcomings of a DFD model

DFD models suffer from several shortcomings. The important shortcomings of the DFD

models are the following:

• DFDs leave ample scope to be imprecise. In the DFD model, the function performed by a
bubble is judged from its label. However, a short label may not capture the entire

functionality of a bubble. For example, a bubble named find-book-position has only

intuitive meaning and does not specify several things, e.g. what happens when some

input information are missing or are incorrect. Further, the find-bookposition bubble may

not convey anything regarding what happens when the required book is missing.

• Control aspects are not defined by a DFD. For instance, the order in which inputs are
consumed and outputs are produced by a bubble is not specified. A DFD model does not

specify the order in which the different bubbles are executed. Representation of such

aspects is very important for modeling real-time systems.
.

•The data flow diagramming technique does not provide any specific guidance as to how

exactly to decompose a given function into its subfunctions and we have to use

subjective judgment to carry out decomposition.

• The method of carrying out decomposition to arrive at the successive levels and the
ultimate level to which decomposition is carried out are highly subjective and depend on the

choice and judgment of the analyst. Due to this reason, even for the same problem, several

alternative DFD representations are possible. Further, many times it is not possible to say

which DFD representation is superior or preferable to another one

