

Software Implementation

What is software implementation?

Software implementation is the process of integrating an application into an

organization's workflow. The process typically begins with choosing a vendor

and establishing a budget. The next steps may involve installing the

application, migrating data and testing various features. Companies use

software implementation when adopting new applications for project

management, supply chain management and enterprise resource planning.

The process can also apply when a development team updates an existing

application.

Why is software implementation important?

Software implementation is important because it allows a company to access

the latest technology. By replacing old applications with new software,

employees can increase their productivity and produce higher quality work.

New applications may also increase customer satisfaction by providing clients

with a more user-friendly experience. A company can increase the chance of

yielding these benefits by using an effective process for software

implementation. For instance, it might choose an application within its budget

and compatible with its existing systems. It's also important to select an

application that the organization can install as efficiently as possible to

minimize downtime.

Elements of a successful software implementation initiative

Here are elements of a successful software implementation initiative:

Defining the organization's needs

By defining the organization's needs, you can make it easier to choose from

thousands of available applications. Start by considering what you want the

software to do. For instance, a company that writes and edits web copy might

benefit from a content management system. A human resources management

system might be more appropriate for a business to streamline its payroll and

benefits program.

Once you determine the ideal function for the software, consider the

organization's additional requirements. For instance, there might be a certain

number of users you want the application to serve. If an application can't

accommodate this number, you can choose a more robust product. Another

consideration is the software's compatibility with the organization's existing

systems and security features.

Choosing the appropriate software

After understanding the organization's needs, you can begin looking for the

appropriate software. Try researching the most popular products in your

industry and seeing what your competitors use. You might also consider newer

products that offer innovative features your organization requires. During your

search for the right software, you can read reviews and consult with vendors to

ensure the application can manage your team size. You might also ask vendors

if they have pilot programs that allow your team to test the software before

buying it.

Installing the application

Vendors offer varying degrees of support with the installation process. Some

include this service in the application package, while others charge extra for

installation support. If the vendor helps your organization install the new

application, consider having them work closely with your IT department. This

collaboration can ensure all necessary devices get the application and facilitate

seamless integration with existing systems. If your IT department installs the

new application independently, try providing the vendor's instructional manual

or contact information to troubleshoot potential issues.

Configuring features

Once your IT department installs the application, try having them configure

only the most basic features first. Configuring simple features typically involves

using the program's default settings. For instance, you might rely on the

program's template customer form before adding additional fields. This

process ensures the application is available to employees and clients as soon as

possible. By reducing downtime, you can improve productivity and increase

customer satisfaction. Keeping the initial configuration process simple also

allows you to troubleshoot underlying issues before adding more complicated

features.

Customizing features

An application's default settings can help your organization achieve its goals,

but you may want to customize features to offer employees and customers

more flexibility. For instance, if the program offers a template for a customer

form, you can add an address field to collect more relevant information from

your customers. Another popular customization option is adding a dashboard

to report the company's performance. Productivity metrics can help

employees understand their progress and encourage them to meet their goals.

Integrating with existing systems

During the selection process, it's important to choose an application that can

integrate with the organization's systems. Compatibility allows multiple

features to work together and prevent errors. As your team integrates the new

application, they might consider how to transfer data from systems that the

organization is no longer using. Automatic data migration can help your team

save time while protecting sensitive information, including customer payment

details.

Training employees

A good training program can ensure employees understand how to use the

new application. The sessions might emphasize how the software differs from

old systems and how employees can optimize the various features. As part of

the training program, consider providing employees with their account login

information and establishing the appropriate permissions.

Testing the software

Employees often report errors they encounter while using new software, but

consider formal testing. Application testing allows you to evaluate the

effectiveness of each feature and identify bugs that affect multiple users. Your

tests can analyze the experience of employees and customers using the

program. Once you determine which features require improvement, you can

make the appropriate adjustments and conduct more testing. Testing also

allows you to identify issues that the vendor is responsible for addressing.

We will study about programming methods, documentation and challenges in

software implementation.

Structured Programming

In the process of coding, the lines of code keep multiplying, thus, size of the

software increases. Gradually, it becomes next to impossible to remember the

flow of program. If one forgets how software and its underlying programs,

files, procedures are constructed it then becomes very difficult to share, debug

and modify the program. The solution to this is structured programming. It

encourages the developer to use subroutines and loops instead of using simple

jumps in the code, thereby bringing clarity in the code and improving its

efficiency Structured programming also helps programmer to reduce coding

time and organize code properly.

Structured programming states how the program shall be coded. Structured

programming uses three main concepts:

 Top-down analysis - A software is always made to perform some

rational work. This rational work is known as problem in the software

parlance. Thus it is very important that we understand how to solve the

problem. Under top-down analysis, the problem is broken down into

small pieces where each one has some significance. Each problem is

individually solved and steps are clearly stated about how to solve the

problem.

 Modular Programming - While programming, the code is broken down

into smaller group of instructions. These groups are known as modules,

subprograms or subroutines. Modular programming based on the

understanding of top-down analysis. It discourages jumps using ‘goto’

statements in the program, which often makes the program flow non-

traceable. Jumps are prohibited and modular format is encouraged in

structured programming.

 Structured Coding - In reference with top-down analysis, structured

coding sub-divides the modules into further smaller units of code in the

order of their execution. Structured programming uses control structure,

which controls the flow of the program, whereas structured coding uses

control structure to organize its instructions in definable patterns.

Functional Programming

Functional programming is style of programming language, which uses the

concepts of mathematical functions. A function in mathematics should always

produce the same result on receiving the same argument. In procedural

languages, the flow of the program runs through procedures, i.e. the control of

program is transferred to the called procedure. While control flow is

transferring from one procedure to another, the program changes its state.

In procedural programming, it is possible for a procedure to produce different

results when it is called with the same argument, as the program itself can be

in different state while calling it. This is a property as well as a drawback of

procedural programming, in which the sequence or timing of the procedure

execution becomes important.

Functional programming provides means of computation as mathematical

functions, which produces results irrespective of program state. This makes it

possible to predict the behavior of the program.

Functional programming uses the following concepts:

 First class and High-order functions - These functions have capability to

accept another function as argument or they return other functions as

results.

 Pure functions - These functions do not include destructive updates,

that is, they do not affect any I/O or memory and if they are not in use,

they can easily be removed without hampering the rest of the program.

 Recursion - Recursion is a programming technique where a function calls

itself and repeats the program code in it unless some pre-defined

condition matches. Recursion is the way of creating loops in functional

programming.

 Strict evaluation - It is a method of evaluating the expression passed to

a function as an argument. Functional programming has two types of

evaluation methods, strict (eager) or non-strict (lazy). Strict evaluation

always evaluates the expression before invoking the function. Non-strict

evaluation does not evaluate the expression unless it is needed.

 λ-calculus - Most functional programming languages use λ-calculus as

their type systems. λ-expressions are executed by evaluating them as

they occur.

Common Lisp, Scala, Haskell, Erlang and F# are some examples of functional

programming languages.

Programming style

Programming style is set of coding rules followed by all the programmers to

write the code. When multiple programmers work on the same software

project, they frequently need to work with the program code written by some

other developer. This becomes tedious or at times impossible, if all developers

do not follow some standard programming style to code the program.

An appropriate programming style includes using function and variable names

relevant to the intended task, using well-placed indentation, commenting code

for the convenience of reader and overall presentation of code. This makes the

program code readable and understandable by all, which in turn makes

debugging and error solving easier. Also, proper coding style helps ease the

documentation and updation.

Coding Guidelines

Practice of coding style varies with organizations, operating systems and

language of coding itself.

The following coding elements may be defined under coding guidelines of an

organization:

 Naming conventions - This section defines how to name functions,

variables, constants and global variables.

 Indenting - This is the space left at the beginning of line, usually 2-8

whitespace or single tab.

 Whitespace - It is generally omitted at the end of line.

 Operators - Defines the rules of writing mathematical, assignment and

logical operators. For example, assignment operator ‘=’ should have

space before and after it, as in “x = 2”.

 Control Structures - The rules of writing if-then-else, case-switch, while-

until and for control flow statements solely and in nested fashion.

 Line length and wrapping - Defines how many characters should be

there in one line, mostly a line is 80 characters long. Wrapping defines

how a line should be wrapped, if is too long.

 Functions - This defines how functions should be declared and invoked,

with and without parameters.

 Variables - This mentions how variables of different data types are

declared and defined.

 Comments - This is one of the important coding components, as the

comments included in the code describe what the code actually does

and all other associated descriptions. This section also helps creating

help documentations for other developers.

Software Documentation

Software documentation is an important part of software process. A well

written document provides a great tool and means of information repository

necessary to know about software process. Software documentation also

provides information about how to use the product.

A well-maintained documentation should involve the following documents:

 Requirement documentation - This documentation works as key tool for

software designer, developer and the test team to carry out their

respective tasks. This document contains all the functional, non-

functional and behavioral description of the intended software.

Source of this document can be previously stored data about the software,

already running software at the client’s end, client’s interview, questionnaires

and research. Generally it is stored in the form of spreadsheet or word

processing document with the high-end software management team.

This documentation works as foundation for the software to be developed and

is majorly used in verification and validation phases. Most test-cases are built

directly from requirement documentation.

 Software Design documentation - These documentations contain all the

necessary information, which are needed to build the software. It

contains: (a) High-level software architecture, (b) Software design

details, (c) Data flow diagrams, (d) Database design

These documents work as repository for developers to implement the

software. Though these documents do not give any details on how to code the

program, they give all necessary information that is required for coding and

implementation.

 Technical documentation - These documentations are maintained by

the developers and actual coders. These documents, as a whole,

represent information about the code. While writing the code, the

programmers also mention objective of the code, who wrote it, where

will it be required, what it does and how it does, what other resources

the code uses, etc.

The technical documentation increases the understanding between various

programmers working on the same code. It enhances re-use capability of the

code. It makes debugging easy and traceable.

There are various automated tools available and some comes with the

programming language itself. For example java comes JavaDoc tool to generate

technical documentation of code.

 User documentation - This documentation is different from all the

above explained. All previous documentations are maintained to provide

information about the software and its development process. But user

documentation explains how the software product should work and how

it should be used to get the desired results.

These documentations may include, software installation procedures, how-to

guides, user-guides, uninstallation method and special references to get more

information like license updation etc.

Software Implementation Challenges

There are some challenges faced by the development team while

implementing the software. Some of them are mentioned below:

 Code-reuse - Programming interfaces of present-day languages are very

sophisticated and are equipped huge library functions. Still, to bring the

cost down of end product, the organization management prefers to re-

use the code, which was created earlier for some other software. There

are huge issues faced by programmers for compatibility checks and

deciding how much code to re-use.

 Version Management - Every time a new software is issued to the

customer, developers have to maintain version and configuration

related documentation. This documentation needs to be highly accurate

and available on time.

 Target-Host - The software program, which is being developed in the

organization, needs to be designed for host machines at the customers

end. But at times, it is impossible to design a software that works on the

target machines.

References :

https://www.tutorialspoint.com/software_engineering/software_implementat

ion.htm

https://www.indeed.com/career-advice/career-development/what-is-

software-implementation

