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Steady Heat Conduction 
In thermodynamics, we considered the amount of heat transfer as a system undergoes a 
process from one equilibrium state to another. Thermodynamics gives no indication of 
how long the process takes. In heat transfer, we are more concerned about the rate of 
heat transfer. 

The basic requirement for heat transfer is the presence of a temperature difference. The 
temperature difference is the driving force for heat transfer, just as voltage difference for 
electrical current. The total amount of heat transfer Q during a time interval can be 
determined from: 

 
t 

Q  Qdt 
0 

kJ 

The rate of heat transfer per unit area is called heat flux, and the average heat flux on a 
surface is expressed as 

q  
Q

 
A 

W / m2 


Steady Heat Conduction in Plane Walls 
Conduction is the transfer of energy from the more energetic particles of a substance to 
the adjacent less energetic ones as result of interactions between the particles. 

Consider steady conduction through a large plane wall of thickness Δx = L and surface area 
A. The temperature difference across the wall is ΔT = T2 – T1. 

Note that heat transfer is the only energy interaction; the energy balance for the wall can 
be expressed: 

 
 
 

For steady‐state operation, 
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in out 
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in out 

 
dEwall 

dt 
 
 
 const. 

It has been experimentally observed that the rate of heat conduction through a layer is 
proportional to the temperature difference across the layer and the heat transfer area, 
but it is inversely proportional to the thickness of the layer. 

rate of heat transfer  
(surface area)(temperature difference) 

thickness 

Q
Cond 

 kA 
T

 
x 

W 

Q

Q














Q• 

 
 

A 
 
 
 
 

 

Δx 

Fig. 1: Heat conduction through a large plane wall. 
 
 

The constant proportionality k is the thermal conductivity of the material. In the limiting 
case where Δx→0, the equation above reduces to the differential form: 

Q Cond 
 kA 

dT
 

dx 
W 

which is called Fourier’s law of heat conduction. The term dT/dx is called the temperature 
gradient, which is the slope of the temperature curve (the rate of change of temperature 
T with length x). 

 

Thermal Conductivity 
Thermal conductivity k [W/mK] is a measure of a material’s ability to conduct heat. The 
thermal conductivity is defined as the rate of heat transfer through a unit thickness of 
material per unit area per unit temperature difference. 

Thermal conductivity changes with temperature and is determined through experiments. 

The thermal conductivity of certain materials show a dramatic change at temperatures 
near absolute zero, when these solids become superconductors. 

An isotropic material is a material that has uniform properties in all directions. 

Insulators are materials used primarily to provide resistance to heat flow. They have low 
thermal conductivity. 
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The Thermal Resistance Concept 
The Fourier equation, for steady conduction through a constant area plane wall, can be 
written: 

 
 
 

This can be re‐arranged as: 

 
Q Cond 

 kA 
dT

 
dx 

 kA
T1  T2

 

L 

 
Q Cond  

T2  T1 

Rwall 

 
(W ) 

Rwall  
kA (∘C /W ) 

Rwall is the thermal resistance of the wall against heat conduction or simply the conduction 
resistance of the wall. 

The heat transfer across the fluid/solid interface is based on Newton’s law of cooling: 

Q  hA T  T  W 

RConv  
hA (∘C /W ) 

Rconv is the thermal resistance of the surface against heat convection or simply the 
convection resistance of the surface. 

Thermal radiation between a surface of area A at Ts and the surroundings at T∞ can be 
expressed as: 

Q  A T 4  T 4   h A T  T   
Ts  T


(W ) 

rad s  rad s 



Rrad    
h A 

 

Rrad 

rad 

h   T 2  T 2 T  T   W 
 rad s  s   

m2 K 


 

where σ = 5.67x10‐8 [W/m2K4] is the Stefan‐Boltzman constant. Also 0 < ε <1 is the 
emissivity of the surface. Note that both the temperatures must be in Kelvin. 

 

Thermal Resistance Network 
Consider steady, one‐dimensional heat flow through two plane walls in series which are 
exposed to convection on both sides, see Fig. 2. Under steady state condition: 
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L / k2 A 
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Rwall ,2 

 
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1/ h2 A 

 
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Rconv,2 

Q  
T,1  T,2 

Rtotal 

Rtotal  Rconv,1  Rwall ,1  Rwall ,2  Rconv,2 
 

Note that A is constant area for a plane wall. Also note that the thermal resistances are in 
series and equivalent resistance is determined by simply adding thermal resistances. 
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Fig. 2: Thermal resistance network. 

The rate of heat transfer between two surfaces is equal to the temperature difference 
divided by the total thermal resistance between two surfaces. 

It can be written: 

ΔT = Q• R 

The thermal resistance concept is widely used in practice; however, its use is limited to 
systems through which the rate of heat transfer remains constant. It other words, to 
systems involving steady heat transfer with no heat generation. 
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Thermal Resistances in Parallel 
The thermal resistance concept can be used to solve steady state heat transfer problem in 
parallel layers or combined series‐parallel arrangements. 

It should be noted that these problems are often two‐ or three dimensional, but 
approximate solutions can be obtained by assuming one dimensional heat transfer (using 
thermal resistance network). 
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Fig. 3: Parallel resistances. 

   T1  T2 T1  T2  1 1 
Q  Q1  Q2  

R 
 

R
  T1   T2   R R 

1 2 

Q  
T1  T2 

Rtotal 

   1 2 

1  1 1  1 R1R2 
    R R R R 

 
R  R 

total    1 2  total 1 2 

Example 1: Thermal Resistance Network 

Consider the combined series‐parallel arrangement shown in figure below. Assuming one 
–dimensional heat transfer, determine the rate of heat transfer. 

•



 

Q

 
 
 

T1 
h, T∞ 

 
 
 

 
L1 L3 

 
• 

1 
R1 

Q• 

Q• 

 
T1 

R2 

Insulation 
 
 
 
 
 
 

T∞ 

R3 Rconv 
 

• 
2 

 
Fig. 4: Schematic for example 1. 

Solution: 

The rate of heat transfer through this composite system can be expressed as: 

Q  
T1  T

Rtotal 

R  R  R  R  
R1 R2  R  R 

total 12 3 conv R1  R2 
3 conv 

Two approximations commonly used in solving complex multi‐dimensional heat transfer 
problems by transfer problems by treating them as one dimensional, using the thermal 
resistance network: 

1‐ Assume any plane wall normal to the x‐axis to be isothermal, i.e. temperature to vary in 
one direction only T = T(x) 

2‐ Assume any plane parallel to the x‐axis to be adiabatic, i.e. heat transfer occurs in the x‐ 
direction only. 

These two assumptions result in different networks (different results). The actual result 
lies between these two results. 

 

Heat Conduction in Cylinders and Spheres 
Steady state heat transfer through pipes is in the normal direction to the wall surface (no 
significant heat transfer occurs in other directions). Therefore, the heat transfer can be 
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k1 

k3 
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Q



 

modeled as steady‐state and one‐dimensional, and the temperature of the pipe will 
depend only on the radial direction, T = T (r). 

Since, there is no heat generation in the layer and thermal conductivity is constant, the 
Fourier law becomes: 
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Fig. 5: Steady, one‐dimensional heat conduction in a cylindrical layer. 

After integration: 
r 2 Q T 2 

 cond ,cyl dr    kdT A  2rL 
r1 A 

Q

 2kL 

 
T 1 

T1  T2 

cond ,cyl lnr2  / r1 



cond ,cyl  

T1  T2 

R 
 

Rcyl 

cyl 

 
lnr2  / r1  

2kL 

where Rcyl is the conduction resistance of the cylinder layer. 

Following the analysis above, the conduction resistance for the spherical layer can be 
found: 
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cond ,sph  

T1  T2 
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Rsph 

sph 

 
r2  r1 

4 r1r2 k 

The convection resistance remains the same in both cylindrical and spherical coordinates, 
Rconv = 1/hA. However, note that the surface area A = 2πrL (cylindrical) and A = 4πr2 
(spherical) are functions of radius. 

Example 2: Multilayer cylindrical thermal resistance network 

Steam at T∞,1 = 320 °C flows in a cast iron pipe [k = 80 W/ m.°C] whose inner and outer 
diameter are D1 = 5 cm and D2 = 5.5 cm, respectively. The pipe is covered with a 3‐cm‐ 
thick glass wool insulation [k = 0.05 W/ m.°C]. Heat is lost to the surroundings at T∞,2 = 5°C 
by natural convection and radiation, with a combined heat transfer coefficient of h2 = 18 
W/m2. °C. Taking the heat transfer coefficient inside the pipe to be h1 = 60 W/m2K, 
determine the rate of heat loss from the steam per unit length of the pipe. Also determine 
the temperature drop across the pipe shell and the insulation. 

Assumptions: 

Steady‐state and one‐dimensional heat transfer. 

Solution: 

Taking L = 1 m, the areas of the surfaces exposed to convection are: 

A1 = 2πr1L = 0.157 m2 

A2 = 2πr2L = 0.361 m2 

Rconv,1  
h A 

 60 W / m2 .∘ C 0.157m2  0.106 ∘C /W 

 
R1  R 
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1    1 

 
lnr2  / r1   0.0002 ∘C /W 

2k1 L 
lnr / r 

R  R  3 2  2.35∘C /W 
2 insulation 2k2 L 

Rconv,2  
h A  0.154 ∘C /W 

2     2 

Rtotal  Rconv,1  R1  R2  Rconv,2  2.61∘ C /W 
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Fig. 6: Schematic for example 1. 

The steady‐state rate of heat loss from the steam becomes 

Q  
T,1  T,2 

Rtotal 

 
 120.7 W 

 
(per m pipe length) 

The total heat loss for a given length can be determined by multiplying the above quantity 
by the pipe length. 

The temperature drop across the pipe and the insulation are: 

Tpipe  Q R 
 

pipe  120.7 W 0.0002 ∘C /W   0.02∘C 

Tinsulation 


insulation  120.7 W 2.35 ∘C /W   284∘C 

Note that the temperature difference (thermal resistance) across the pipe is too small 
relative to other resistances and can be ignored. 

 

Critical Radius of Insulation 
To insulate a plane wall, the thicker the insulator, the lower the heat transfer rate (since 
the area is constant). However, for cylindrical pipes or spherical shells, adding insulation 
results in increasing the surface area which in turns results in increasing the convection 
heat transfer. As a result of these two competing trends the heat transfer may increase or 
decrease. 
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Fig. 7: Critical radius of insulation. 

 
 

The variation of Q• with the outer radius of the insulation reaches a maximum that can be 
determined from dQ• / dr2 = 0. The value of the critical radius for the cylindrical pipes and 
spherical shells are: 
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k 
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2k 

h 

 
(m) 

 
(m) 

Note that for most applications, the critical radius is so small. Thus, we can insulate hot 
water or steam pipes without worrying about the possibility of increasing the heat 
transfer by insulating the pipe. 
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Heat Generation in Solids 
Conversion of some form of energy into heat energy in a medium is called heat 
generation. Heat generation leads to a temperature rise throughout the medium. 

Some examples of heat generation are resistance heating in wires, exothermic chemical 
reactions in solids, and nuclear reaction. Heat generation is usually expressed per unit 
volume (W/m3). 

In most applications, we are interested in maximum temperature Tmax and surface 
temperature Ts of solids which are involved with heat generation. 

The maximum temperature Tmax in a solid that involves uniform heat generation will occur 
at a location furthest away from the outer surface when the outer surface is maintained 
at a constant temperature, Ts. 
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Fig. 8: Maximum temperature with heat generation. 

Consider a solid medium of surface area A, volume V, and constant thermal conductivity k, 
where heat is generated at a constant rate of g• per unit volume. Heat is transferred from 
the solid to the surroundings medium at T∞. Under steady conditions, the energy balance 
for the solid can be expressed as: 

 

rate of heat transfer 
from the solid 

= rate of energy generation 
within the solid 

 
Q• = g• V (W) 

From the Newton’s law of cooling, Q•= hA (Ts ‐ T∞). Combining these equations, a 
relationship for the surface temperature can be found: 

g V 
Ts  T  

hA
 



 

r 

Using the above relationship, the surface temperature can be calculated for a plane wall 
of thickness 2L, a long cylinder of radius r0, and a sphere of radius r0, as follows: 

g  L 
Ts,plane wall  T  

h 

Ts,cylinder  T

g r 
 0  

2h 
g r 

Ts,sphere  T  0  

3h 

Note that the rise in temperature is due to heat generation. 

Using the Fourier’s law, we can derive a relationship for the center (maximum) 
temperature of long cylinder of radius r0. 

dT  
kAr dr

  g V Ar  2rL V  r 2 L 

After integrating,  
g  r 2 

Tmax  T0  Ts  0  

4k 

where T0 is the centerline temperature of the cylinder (Tmax). Using the approach, the 
maximum temperature can be found for plane walls and spheres. 

g  r 2 

Tmax,cylinder 

 


 0  

4k 
g  L2 

Tmax,plane wall  
2k 

Tmax,sphere 

g r 2 
 0  

6k 
 

Heat Transfer from Finned Surfaces 
From the Newton’s law of cooling, Q•

conv = h A (Ts ‐ T∞), the rate of convective heat 
transfer from a surface at a temperature Ts can be increased by two methods: 

1) Increasing the convective heat transfer coefficient, h 

2) Increasing the surface area A. 

Increasing the convective heat transfer coefficient may not be practical and/or adequate. 
An increase in surface area by attaching extended surfaces called fins to the surface is 
more convenient. 

Finned surfaces are commonly used in practice to enhance heat transfer. In the analysis of 
the fins, we consider steady operation with no heat generation in the fin. We also assume 
that the convection heat transfer coefficient h to be constant and uniform over the entire 
surface of the fin. 
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Fig. 9: Temperature of a fin drops gradually along the fin. 

In the limiting case of zero thermal resistance (k→∞), the temperature of the fin will be 
uniform at the base value of Tb. The heat transfer from the fin will be maximized in this 
case: 

 
 

Fin efficiency can be defined as: 


fin,max  hA 

 
 
fin Tb  T 



fin 

 
 

fin 
fin,max 

actual heat transfer rate from the fin 
 

 

ideal heat transfer rate from the fin (if the entire fin were at base temperature) 

where Afin is total surface area of the fin. This enables us to determine the heat transfer 
from a fin when its efficiency is known: 


fin   fin 


fin,max   fin hAfin Tb  T 



Fin efficiency for various profiles can be read from Fig. 10‐42, 10‐43 in Cengel’ s book. 

The following must be noted for a proper fin selection: 

 the longer the fin, the larger the heat transfer area and thus the higher the rate of 
heat transfer from the fin 

 the larger the fin, the bigger the mass, the higher the price, and larger the fluid friction 
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Q Q



 

hp 

kAc 

hpkAc 



 also, the fin efficiency decreases with increasing fin length because of the decrease in 
fin temperature with length. 

 

Fin Effectiveness 
The performance of fins is judged on the basis of the enhancement in heat transfer 
relative to the no‐fin case, and expressed in terms of the fin effectiveness: 

Q  Q heat transfer rate from the fin  fin  fin 
 

 



fin  
Qno fin hAb Tb  T



heat transfer rate from the surface area of A b 

 
 

  1 
 fin   1 

fin acts as insulation 

fin does not affect heat transfer 
  1 fin enhances heat transfer 

 

For a sufficiently long fin of uniform cross‐section Ac, the temperature at the tip of the fin 
will approach the environment temperature, T∞. By writing energy balance and solving 
the differential equation, one finds: 

T x  T
  exp x 

Tb  T

Q 

 
 
T  T 

long fin b 


where Ac is the cross‐sectional area, x is the distance from the base, and p is perimeter. 
The effectiveness becomes: 

 

 long fin 


To increase fin effectiveness, one can conclude: 

 the thermal conductivity of the fin material must be as high as possible 

 the ratio of perimeter to the cross‐sectional area p/Ac should be as high as possible 

 the use of fin is most effective in applications that involve low convection heat 
transfer coefficient, i.e. natural convection. 

kp 

hAc 

 


