TCA CYCLE

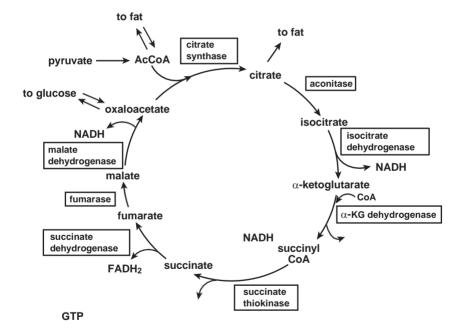
•

.

.

-

.


.

•

.

.

•

Dr. Vishal Chand

.

•

.

•

•

•

.

•

Figure 1-1 The Tricarboxylic Acid (TCA) Cycle

TCA CYCLE ¹ (see Fig. 1-1.)	
Function:	To burn the acetyl-CoA made from fat, glucose, or protein in order to make ATP in cooperation with oxidative phosphorylation.
Location:	All cells with mitochondria.
Connections:	From glycolysis through acetyl-CoA.
	Pyruvate makes oxaloacetate and malate through the anaplerotic reactions.
Regulation: ATP yield:	 To b oxidation through acetyl-CoA. To amino acid degradation through acetyl-CoA and various intermediates of the cycle. Supply and demand of TCA cycle. Availability of NAD⁺ and FAD as substrates. Inhibition by NADH. High-energy signals turn off. Low-energy signals turn on. Pyruvate ■ 15ATP
-	Acetyl-CoA 🛾 12ATP
Equations:	
Pyruvate + GDP + P_i + 3NAD ⁺ + FAD $3CO_2$ + GTP + 3NADH + FADH ₂ + 3H ⁺	
Acetyl-CoA + GDP + P_i + 2NAD ⁺ + FAD 2CO ₂ + GTP + 2NADH + FADH ₂ + 2H ⁺	

¹ The tricarboxylic acid cycle is also known as the Krebs cycle or the citric acid cycle.

Dr. Vishal Chand