
 

Transient Heat Conduction 
In general, temperature of a body varies with time as well as position. 

 

Lumped System Analysis 
Interior temperatures of some bodies remain essentially uniform at all times during a heat 
transfer process. The temperature of such bodies are only a function of time, T = T(t). The 
heat transfer analysis based on this idealization is called lumped system analysis. 

Consider a body of arbitrary shape of mass m, volume V, surface area A, density ρ and 
specific heat Cp initially at a uniform temperature Ti. 
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Fig. 1: Lumped system analysis. 

At time t = 0, the body is placed into a medium at temperature T∞ (T∞ >Ti) with a heat 
transfer coefficient h. An energy balance of the solid for a time interval dt can be 
expressed as: 

 

heat transfer into the body 
during dt 

= the increase in the energy of 
the body during dt 

 

h A (T∞ ‐ T) dt = m Cp dT 

With m = ρV and change of variable dT = d(T ‐ T∞), we find: 

d T  T    hA 
dt

 
 

 

Integrating from t = 0 to T = Ti 
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Fig. 2: Temperature of a lump system. 

Using above equation, we can determine the temperature T(t) of a body at time t, or 
alternatively, the time t required for the temperature to reach a specified value T(t). 

Note that the temperature of a body approaches the ambient temperature T∞ 
exponentially. 

A large value of b indicates that the body will approach the environment temperature in a 
short time. 

b is proportional to the surface area, but inversely proportional to the mass and the 
specific heat of the body. 

The total amount of heat transfer between a body and its surroundings over a time 
interval is: 

Q = m Cp [T(t) – Ti] 
 

Electrical Analogy 
The behavior of lumped systems, shown in Fig. 2 can be interpreted as a thermal time 
constant 
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where Rt is the resistance to convection heat transfer and Ct is the lumped thermal 
capacitance of the solid. Any increase in Rt or Ct will cause a solid to respond more slowly 
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to changes in its thermal environment and will increase the time respond required to 
reach thermal equilibrium. 

 

 

Fig. 3: Thermal time constant. 
 

Criterion for Lumped System Analysis 
Lumped system approximation provides a great convenience in heat transfer analysis. We 
want to establish a criterion for the applicability of the lumped system analysis. 

A characteristic length scale is defined as: 
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A non‐dimensional parameter, the Biot number, is defined: 
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The Biot number is the ratio of the internal resistance (conduction) to the external 
resistance to heat convection. 

Lumped system analysis assumes a uniform temperature distribution throughout the 
body, which implies that the conduction heat resistance is zero. Thus, the lumped system 
analysis is exact when Bi = 0. 

It is generally accepted that the lumped system analysis is applicable if 

Bi  0.1 
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Therefore, small bodies with high thermal conductivity are good candidates for lumped 
system analysis. 

Note that assuming h to be constant and uniform is an approximation. 

Example 1 

A thermocouple junction, which may be approximated by a sphere, is to be used for 
temperature measurement in a gas stream. The convection heat transfer coefficient 
between the junction surface and the gas is known to be h = 400 W/m2.K, and the 
junction thermophysical properties are k = 20 W/m.K, Cp = 400 J/kg.K, and ρ = 8500 kg/m3. 
Determine the junction diameter needed for the thermocouple to have a time constant of 
1 s. If the junction is at 25°C and is placed in a gas stream that is at 200°C, how long will it 
take for the junction to reach 199°C? 

Assumptions: 

1. Temperature of the junction is uniform at any instant. 

2. Radiation is negligible. 

3. Losses through the leads, by conduction, are negligible. 

4. Constant properties. 
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Solution: 

To find the diameter of the junction, we can use the time constant: 
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Rearranging and substituting numerical values, one finds, D = 0.706 mm. 

Now, we can check the validity of the lumped system analysis. With Lc = r0 / 3 





 

Bi  
hLc

 

k 
 2.35 104  0.1  Lumped analysis is OK. 

Bi << 0.1, therefore, the lumped approximation is an excellent approximation. 

The time required for the junction to reach T = 199°C is 
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Transient Conduction in Large Plane Walls, Long Cylinders, and Spheres 
The lumped system approximation can be used for small bodies of highly conductive 
materials. But, in general, temperature is a function of position as well as time. 

Consider a plane wall of thickness 2L, a long cylinder of radius r0, and a sphere of radius r0 
initially at a uniform temperature Ti. 
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Fig. 4: Schematic for simple geometries in which heat transfer is one‐dimensional. 
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   A e  cos X 

We also assume a constant heat transfer coefficient h and neglect radiation. The 
formulation of the one‐dimensional transient temperature distribution T(x,t) results in a 
partial differential equation (PDE), which can be solved using advanced mathematical 
methods. For plane wall, the solution involves several parameters: 

T = T (x, L, k, α, h, Ti, T∞) 

where α = k/ρCp. By using dimensional groups, we can reduce the number of parameters. 

   x, Bi, 
To find the temperature solution for plane wall, i.e. Cartesian coordinate, we should solve 
the Laplace’s equation with boundary and initial conditions: 
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Boundary conditions: T 0,t   0,
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Initial condition: T(x,0) = Ti (2b) 

So, one can write: 
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The general solution, to the PDE in Eq. (1) with the boundary conditions and initial 
conditions stated in Eqs. (2), is in the form of an infinite series: 
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Table 11‐1 , Cengle’s book, lists solutions for plane wall, cylinder, and sphere. 

There are two approaches: 

1. Use the first term of the infinite series solution. This method is only valid for Fourier 
number > 0.2 

2. Use the Heisler charts for each geometry as shown in Figs. 11‐15, 11‐16 and 11‐17. 



 

Using the First Term Solution 
The maximum error associated with method is less than 2%. For different geometries we 
have: 
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where A1 and λ1 can be found from Table 11‐2 Cengel book. 
 

Using Heisler Charts 
There are three charts, Figs. 11‐15 to 11‐17, one associated with each geometry: 

1. The first chart is to determine the temperature at the center T0 at a given time. 

2. The second chart is to determine the temperature at other locations at the same 
time in terms of T0. 

3. The third chart is to determine the total amount of heat transfer up to the time t. 
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