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Transportation, Assignment, and
Transshipment Problems

In this chapter, we discuss three special types of linear programming problems: transporta-
tion, assignment, and transshipment. Each of these can be solved by the simplex algorithm,
but specialized algorithms for each type of problem are much more efficient.

7.1 Formulating Transportation Problems
We begin our discussion of transportation problems by formulating a linear programming
model of the following situation.

Powerco has three electric power plants that supply the needs of four cities.† Each power
plant can supply the following numbers of kilowatt-hours (kwh) of electricity: plant 1—
35 million; plant 2—50 million; plant 3—40 million (see Table 1). The peak power de-
mands in these cities, which occur at the same time (2 P.M.), are as follows (in kwh): city
1—45 million; city 2—20 million; city 3—30 million; city 4—30 million. The costs of
sending 1 million kwh of electricity from plant to city depend on the distance the elec-
tricity must travel. Formulate an LP to minimize the cost of meeting each city’s peak
power demand.

Solution To formulate Powerco’s problem as an LP, we begin by defining a variable for each deci-
sion that Powerco must make. Because Powerco must determine how much power is sent
from each plant to each city, we define (for i � 1, 2, 3 and j � 1, 2, 3, 4)

xij � number of (million) kwh produced at plant i and sent to city j

In terms of these variables, the total cost of supplying the peak power demands to cities
1–4 may be written as

� 8x11 � 6x12 � 10x13 � 9x14 (Cost of shipping power from plant 1)

� 9x21 � 12x22 � 13x23 � 7x24 (Cost of shipping power from plant 2)

� 14x31 � 9x32 � 16x33 � 5x34 (Cost of shipping power from plant 3)

Powerco faces two types of constraints. First, the total power supplied by each plant
cannot exceed the plant’s capacity. For example, the total amount of power sent from plant

Powerco FormulationE X A M P L E  1

†This example is based on Aarvik and Randolph (1975).
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1 to the four cities cannot exceed 35 million kwh. Each variable with first subscript 1 rep-
resents a shipment of power from plant 1, so we may express this restriction by the LP
constraint

x11 � x12 � x13 � x14 � 35

In a similar fashion, we can find constraints that reflect plant 2’s and plant 3’s capacities.
Because power is supplied by the power plants, each is a supply point. Analogously, a
constraint that ensures that the total quantity shipped from a plant does not exceed plant
capacity is a supply constraint. The LP formulation of Powerco’s problem contains the
following three supply constraints:

x11 � x12 � x13 � x14 � 35 (Plant 1 supply constraint)

x21 � x22 � x23 � x24 � 50 (Plant 2 supply constraint)

x31 � x32 � x33 � x34 � 40 (Plant 3 supply constraint)

Second, we need constraints that ensure that each city will receive sufficient power to
meet its peak demand. Each city demands power, so each is a demand point. For exam-
ple, city 1 must receive at least 45 million kwh. Each variable with second subscript 1
represents a shipment of power to city 1, so we obtain the following constraint:

x11 � x21 � x31 � 45

Similarly, we obtain a constraint for each of cities 2, 3, and 4. A constraint that ensures
that a location receives its demand is a demand constraint. Powerco must satisfy the fol-
lowing four demand constraints:

x11 � x21 � x31 � 45 (City 1 demand constraint)

x12 � x22 � x32 � 20 (City 2 demand constraint)

x13 � x23 � x33 � 30 (City 3 demand constraint)

x14 � x24 � x34 � 30 (City 4 demand constraint)

Because all the xij’s must be nonnegative, we add the sign restrictions xij � 0 (i � 1, 2,
3; j � 1, 2, 3, 4).

Combining the objective function, supply constraints, demand constraints, and sign re-
strictions yields the following LP formulation of Powerco’s problem:

min z � 8x11 � 6x12 � 10x13 � 9x14 � 9x21 � 12x22 � 13x23 � 7x24

� 14x31 � 9x32 � 16x33 � 5x34

s.t. x11 � x12 � x13 � x14 � 35 (Supply constraints)

s.t. x21 � x22 � x23 � x24 � 50

s.t. x31 � x32 � x33 � x34 � 40

TA B L E  1
Shipping Costs, Supply, and Demand for Powerco

To
Supply

From City 1 City 2 City 3 City 4 (million kwh)

Plant 1 $8 $6 $10 $9 35
Plant 2 $9 $12 $13 $7 50
Plant 3 $14 $9 $16 $5 40

Demand 45 20 30 30
(million kwh)
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s.t. x11 � x21 � x31 � x34 � 45 (Demand constraints)

s.t. x12 � x22 � x32 � x34 � 20

s.t. x13 � x23 � x33 � x34 � 30

s.t. x14 � x24 � x34 � x34 �30

xij � 0 (i � 1, 2, 3; j � 1, 2, 3, 4)

In Section 7.3, we will find that the optimal solution to this LP is z � 1020, x12 � 10,
x13 � 25, x21 � 45, x23 � 5, x32 � 10, x34 � 30. Figure 1 is a graphical representation
of the Powerco problem and its optimal solution. The variable xij is represented by a line,
or arc, joining the ith supply point (plant i) and the jth demand point (city j).

General Description of a Transportation Problem

In general, a transportation problem is specified by the following information:

1 A set of m supply points from which a good is shipped. Supply point i can supply at
most si units. In the Powerco example, m � 3, s1 � 35, s2 � 50, and s3 � 40.

2 A set of n demand points to which the good is shipped. Demand point j must receive
at least dj units of the shipped good. In the Powerco example, n � 4, d1 � 45, d2 � 20,
d3 � 30, and d4 � 30.

3 Each unit produced at supply point i and shipped to demand point j incurs a variable
cost of cij. In the Powerco example, c12 � 6.

Let

xij � number of units shipped from supply point i to demand point j

then the general formulation of a transportation problem is

min �
i�m

i�1
�
j�n

j�1

cijxij

Plant 1

Supply points Demand points

s1  =  35

x11  =  0

x12  =  10

x13  =  25
x14  =  0

x21  =  45

x31  =  0
x32  =  10

x33  =  0

x34  =  30

x24  =  0

x23  =  5

x22  =  0

City 1 d1  =  45

City 2 d2  =  20

City 3 d3  =  30

City 4 d4  =  30

Plant 2s1  =  50

Plant 3s1  =  40

F I G U R E  1
Graphical

Representation of
Powerco Problem and

Its Optimal Solution
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s.t. �
j�n

j�1

xij � si (i � 1, 2, . . . , m) (Supply constraints)
(1)

s.t. �
i�m

i�1

xij � dj ( j � 1, 2, . . . , n) (Demand constraints)

xij � 0 (i � 1, 2, . . . , m; j � 1, 2, . . . , n)

If a problem has the constraints given in (1) and is a maximization problem, then it is still
a transportation problem (see Problem 7 at the end of this section). If

�
i�m

i�1

si � �
j�n

j�1

dj

then total supply equals total demand, and the problem is said to be a balanced trans-
portation problem.

For the Powerco problem, total supply and total demand both equal 125, so this is a
balanced transportation problem. In a balanced transportation problem, all the constraints
must be binding. For example, in the Powerco problem, if any supply constraint were non-
binding, then the remaining available power would not be sufficient to meet the needs of
all four cities. For a balanced transportation problem, (1) may be written as

min �
i�m

i�1
�
j�n

j�1

cijxij

s.t. �
j�n

j�1

xij � si (i � 1, 2, . . . , m) (Supply constraints)
(2)

s.t. �
i�m

i�1

xij � dj ( j � 1, 2, . . . , n) (Demand constraints)

xij � 0 (i � 1, 2, . . . , m; j � 1, 2, . . . , n)

Later in this chapter, we will see that it is relatively simple to find a basic feasible solu-
tion for a balanced transportation problem. Also, simplex pivots for these problems do not
involve multiplication and reduce to additions and subtractions. For these reasons, it is de-
sirable to formulate a transportation problem as a balanced transportation problem.

Balancing a Transportation Problem 
If Total Supply Exceeds Total Demand

If total supply exceeds total demand, we can balance a transportation problem by creat-
ing a dummy demand point that has a demand equal to the amount of excess supply.
Because shipments to the dummy demand point are not real shipments, they are assigned
a cost of zero. Shipments to the dummy demand point indicate unused supply capacity.
To understand the use of a dummy demand point, suppose that in the Powerco problem,
the demand for city 1 were reduced to 40 million kwh. To balance the Powerco problem,
we would add a dummy demand point (point 5) with a demand of 125 � 120 � 5 mil-
lion kwh. From each plant, the cost of shipping 1 million kwh to the dummy is 0. The op-
timal solution to this balanced transportation problem is z � 975, x13 � 20, x12 � 15, 
x21 � 40, x23 � 10, x32 � 5, x34 � 30, and x35 � 5. Because x35 � 5, 5 million kwh of
plant 3 capacity will be unused (see Figure 2).

A transportation problem is specified by the supply, the demand, and the shipping
costs, so the relevant data can be summarized in a transportation tableau (see Table 2).
The square, or cell, in row i and column j of a transportation tableau corresponds to the
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Plant 1

Supply points Demand points

s1  =  35

x11  =  0

x32  =  5

x12  =  15

x14  =  0

x21  =  40

x33  =  0

x23  =  10

x13  =  20

x31  =  0

x34  =  30

x15  =  0

x35  =  5

x24  =  0

x25  =  0

x22  =  0

City 1 d1  =  40

City 2 d2  =  20

City 3 d3  =  30

City 4 d4  =  30

Dummy
City 5

d5  =  5

Plant 2s2  =  50

Plant 3s3  =  40

F I G U R E  2
Graphical

Representation of
Unbalanced Powerco

Problem and Its
Optimal Solution (with
Dummy Demand Point)

c11 c12 c1n

c21 c22 c2n

cm1 cm2 cmn

s1

s2

sm

dnd2d1

TA B L E  2
A Transportation Tableau

Supply

Demand

8 6 9

9 12 7

302045 30

10

10

45 5

25

30

10

13

14 9 16 5

35

50

40

TA B L E  3
Transportation Tableau 

for Powerco

City 1 City 2 City 3 City 4 Supply

Plant 1

Plant 2

Plant 3

Demand



variable xij. If xij is a basic variable, its value is placed in the lower left-hand corner of
the ijth cell of the tableau. For example, the balanced Powerco problem and its optimal
solution could be displayed as shown in Table 3. The tableau format implicitly expresses
the supply and demand constraints through the fact that the sum of the variables in row i
must equal si and the sum of the variables in column j must equal dj.

Balancing a Transportation Problem 
If Total Supply Is Less Than Total Demand

If a transportation problem has a total supply that is strictly less than total demand, then
the problem has no feasible solution. For example, if plant 1 had only 30 million kwh of
capacity, then a total of only 120 million kwh would be available. This amount of power
would be insufficient to meet the total demand of 125 million kwh, and the Powerco prob-
lem would no longer have a feasible solution.

When total supply is less than total demand, it is sometimes desirable to allow the pos-
sibility of leaving some demand unmet. In such a situation, a penalty is often associated
with unmet demand. Example 2 illustrates how such a situation can yield a balanced trans-
portation problem.

Two reservoirs are available to supply the water needs of three cities. Each reservoir can
supply up to 50 million gallons of water per day. Each city would like to receive 40 mil-
lion gallons per day. For each million gallons per day of unmet demand, there is a penalty.
At city 1, the penalty is $20; at city 2, the penalty is $22; and at city 3, the penalty is $23.
The cost of transporting 1 million gallons of water from each reservoir to each city is
shown in Table 4. Formulate a balanced transportation problem that can be used to min-
imize the sum of shortage and transport costs.

Solution In this problem,

Daily supply � 50 � 50 � 100 million gallons per day

Daily demand � 40 � 40 � 40 � 120 million gallons per day

To balance the problem, we add a dummy (or shortage) supply point having a supply of
120 � 100 � 20 million gallons per day. The cost of shipping 1 million gallons from the
dummy supply point to a city is just the shortage cost per million gallons for that city. Table
5 shows the balanced transportation problem and its optimal solution. Reservoir 1 should
send 20 million gallons per day to city 1 and 30 million gallons per day to city 2, whereas
reservoir 2 should send 10 million gallons per day to city 2 and 40 million gallons per day
to city 3. Twenty million gallons per day of city 1’s demand will be unsatisfied.

7. 1 Formulating Transportation Problems 365

Handling ShortagesE X A M P L E  2

TA B L E  4
Shipping Costs for Reservoir

To

From City 1 City 2 City 3

Reservoir 1 $7 $8 $10
Reservoir 2 $9 $7 $8
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Modeling Inventory Problems as Transportation Problems

Many inventory planning problems can be modeled as balanced transportation problems.
To illustrate, we formulate a balanced transportation model of the Sailco problem of Sec-
tion 3.10.

Sailco Corporation must determine how many sailboats should be produced during each
of the next four quarters (one quarter is three months). Demand is as follows: first quarter,
40 sailboats; second quarter, 60 sailboats; third quarter, 75 sailboats; fourth quarter, 25 sail-
boats. Sailco must meet demand on time. At the beginning of the first quarter, Sailco has
an inventory of 10 sailboats. At the beginning of each quarter, Sailco must decide how
many sailboats should be produced during the current quarter. For simplicity, we assume
that sailboats manufactured during a quarter can be used to meet demand for the current
quarter. During each quarter, Sailco can produce up to 40 sailboats at a cost of $400 per
sailboat. By having employees work overtime during a quarter, Sailco can produce addi-
tional sailboats at a cost of $450 per sailboat. At the end of each quarter (after production
has occurred and the current quarter’s demand has been satisfied), a carrying or holding
cost of $20 per sailboat is incurred. Formulate a balanced transportation problem to mini-
mize the sum of production and inventory costs during the next four quarters.

Solution We define supply and demand points as follows:

Supply Points Point 1 � initial inventory (s1 � 10)

Supply Points Point 2 � quarter 1 regular-time (RT) production (s2 � 40)

Supply Points Point 3 � quarter 1 overtime (OT) production (s3 � 150)

Supply Points Point 4 � quarter 2 RT production (s4 � 40)

Supply Points Point 5 � quarter 2 OT production (s5 � 150)

Supply Points Point 6 � quarter 3 RT production (s6 � 40)

Supply Points Point 7 � quarter 3 OT production (s7 � 150)

Supply Points Point 8 � quarter 4 RT production (s8 � 40)

Supply Points Point 9 � quarter 4 OT production (s9 � 150)

There is a supply point corresponding to each source from which demand for sailboats
can be met:

Setting Up an Inventory Problem as a Transportation ProblemE X A M P L E  3

TA B L E  5
Transportation Tableau 

for Reservoir
7 8

9 7

4040 40

30

20

10 40

20

10

8

20 22 23

50

20

50

City 1 City 2 City 3 Supply

Dummy (shortage)

Reservoir 2

Demand

Reservoir 1
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Demand Points Point 1 � quarter 1 demand (d1 � 40)

Demand Points Point 2 � quarter 2 demand (d2 � 60)

Demand Points Point 3 � quarter 3 demand (d3 � 75)

Demand Points Point 4 � quarter 4 demand (d4 � 25)

Demand Points Point 5 � dummy demand point (d5 � 770 � 200 � 570)

A shipment from, say, quarter 1 RT to quarter 3 demand means producing 1 unit on regu-
lar time during quarter 1 that is used to meet 1 unit of quarter 3’s demand. To determine,
say, c13, observe that producing 1 unit during quarter 1 RT and using that unit to meet quar-
ter 3 demand incurs a cost equal to the cost of producing 1 unit on quarter 1 RT plus the
cost of holding a unit in inventory for 3 � 1 � 2 quarters. Thus, c13 � 400 � 2(20) � 440.

Because there is no limit on the overtime production during any quarter, it is not clear
what value should be chosen for the supply at each overtime production point. Total de-
mand � 200, so at most 200 � 10 � 190 (�10 is for initial inventory) units will be pro-
duced during any quarter. Because 40 units must be produced on regular time before any
units are produced on overtime, overtime production during any quarter will never exceed
190 � 40 � 150 units. Any unused overtime capacity will be “shipped” to the dummy
demand point. To ensure that no sailboats are used to meet demand during a quarter prior
to their production, a cost of M (M is a large positive number) is assigned to any cell that
corresponds to using production to meet demand for an earlier quarter.

TA B L E  6
Transportation Tableau 

for Sailco

40

M

60

M

75

M

25

450

570

0

150

M M M 400

25

0

15

M M 450

35

470 0

115

M M 400

40

420 0

M 450

10

470 490 0

140

M 400

40

420 440 0

450 470 490 510 0

150

400

30

420

10

440 460 0

0

10

20 40 60 0

150

40

150

40

150

40

150

40

10

1 2 3 4 Dummy Supply

Demand

Initial

Qtr 1 RT

Qtr 1 OT

Qtr 2 OT

Qtr 3 OT

Qtr 4 RT

Qtr 4 OT

Qtr 2 RT

Qtr 3 RT
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Total supply � 770 and total demand � 200, so we must add a dummy demand point
with a demand of 770 � 200 � 570 to balance the problem. The cost of shipping a unit
from any supply point to the dummy demand point is 0.

Combining these observations yields the balanced transportation problem and its opti-
mal solution shown in Table 6. Thus, Sailco should meet quarter 1 demand with 10 units
of initial inventory and 30 units of quarter 1 RT production; quarter 2 demand with 10
units of quarter 1 RT, 40 units of quarter 2 RT, and 10 units of quarter 2 OT production;
quarter 3 demand with 40 units of quarter 3 RT and 35 units of quarter 3 OT production;
and finally, quarter 4 demand with 25 units of quarter 4 RT production.

In Problem 12 at the end of this section, we show how this formulation can be modi-
fied to incorporate other aspects of inventory problems (backlogged demand, perishable
inventory, and so on).

Solving Transportation Problems on the Computer

To solve a transportation problem with LINDO, type in the objective function, supply con-
straints, and demand constraints. Other menu-driven programs are available that accept
the shipping costs, supply values, and demand values. From these values, the program can
generate the objective function and constraints.

LINGO can be used to easily solve any transportation problem. The following LINGO
model can be used to solve the Powerco example (file Trans.lng).

MODEL:
1]SETS:
2]PLANTS/P1,P2,P3/:CAP;
3]CITIES/C1,C2,C3,C4/:DEM;
4]LINKS(PLANTS,CITIES):COST,SHIP;
5]ENDSETS
6]MIN=@SUM(LINKS:COST*SHIP);
7]@FOR(CITIES(J):
8]@SUM(PLANTS(I):SHIP(I,J))>DEM(J));
9]@FOR(PLANTS(I):

10]@SUM(CITIES(J):SHIP(I,J))<CAP(I));
11]DATA:
12]CAP=35,50,40;
13]DEM=45,20,30,30;
14]COST=8,6,10,9,
15]9,12,13,7,
16]14,9,16,5;
17]ENDDATA

END

Lines 1–5 define the SETS needed to generate the objective function and constraints.
In line 2, we create the three power plants (the supply points) and specify that each has a
capacity (given in the DATA section). In line 3, we create the four cities (the demand
points) and specify that each has a demand (given in the DATA section). The LINK state-
ment in line 4 creates a LINK(I,J) as I runs over all PLANTS and J runs over all CITIES.
Thus, objects LINK(1,1), LINK (1,2), LINK(1,3), LINK(1,4), LINK(2,1), LINK (2,2),
LINK(2,3), LINK(2,4), LINK(3,1), LINK (3,2), LINK(3,3), LINK(3,4) are created and
stored in this order. Attributes with multiple subscripts are stored so that the rightmost
subscripts advance most rapidly. Each LINK has two attributes: a per-unit shipping cost
[(COST), given in the DATA section] and the amount shipped (SHIP), for which LINGO
will solve.

Line 6 creates the objective function. We sum over all links the product of the unit
shipping cost and the amount shipped. Using the @FOR and @SUM operators, lines 7–8

Trans.lng
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generate all demand constraints. They ensure that for each city, the sum of the amount
shipped into the city will be at least as large as the city’s demand. Note that the extra
parenthesis after SHIP(I,J) in line 8 is to close the @SUM operator, and the extra paren-
thesis after DEM(J) is to close the @FOR operator. Using the @FOR and @SUM op-
erators, lines 9–10 generate all supply constraints. They ensure that for each plant, the to-
tal shipped out of the plant will not exceed the plant’s capacity.

Lines 11–17 contain the data needed for the problem. Line 12 defines each plant’s ca-
pacity, and line 13 defines each city’s demand. Lines 14–16 contain the unit shipping cost
from each plant to each city. These costs correspond to the ordering of the links described
previously. ENDDATA ends the data section, and END ends the program. Typing GO will
solve the problem.

This program can be used to solve any transportation problem. If, for example, we
wanted to solve a problem with 15 supply points and 10 demand points, we would change
line 2 to create 15 supply points and line 3 to create 10 demand points. Moving to line
12, we would type in the 15 plant capacities. In line 13, we would type in the demands
for the 10 demand points. Then in line 14, we would type in the 150 shipping costs. Ob-
serve that the part of the program (lines 6–10) that generates the objective function and
constraints remains unchanged! Notice also that our LINGO formulation does not require
that the transportation problem be balanced.

Obtaining LINGO Data from an Excel Spreadsheet

Often it is easier to obtain data for a LINGO model from a spreadsheet. For example,
shipping costs for a transportation problem may be the end result of many computations.
As an example, suppose we have created the capacities, demands, and shipping costs for
the Powerco model in the file Powerco.xls (see Figure 3). We have created capacities in
the cell range F9:F11 and named the range Cap. As you probably know, you can name a
range of cells in Excel by selecting the range and clicking in the name box in the upper
left-hand corner of your spreadsheet. Then type the range name and hit the Enter key. In
a similar fashion, name the city demands (in cells B12:E12) with the name Demand and
the unit shipping costs (in cells B4:E6) with the name Costs.

Powerco.xls

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A B C D E F G H
OPTIMAL SOLUTION FOR POWERCO COSTS

COSTS CITY 1020

PLANT 1 2 3 4

1 8 6 10 9

2 9 12 13 7

3 14 9 16 5

SHIPMENTS CITY SHIPPED SUPPLIES

PLANT 1 2 3 4

1 0 10 25 0 35 <= 35

2 45 0 5 0 50 <= 50

3 0 10 0 30 40 <= 40

RECEIVED 45 20 30 30

>= >= >= >=

DEMANDS 45 20 30 30

F I G U R E  3
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Using an @OLE statement, LINGO can read from a spreadsheet the values of data
that are defined in the Sets portion of a program. The LINGO program (see file Transp-
spread.lng) needed to read our input data from the Powerco.xls file is shown below.

MODEL:
SETS:
PLANTS/P1,P2,P3/:CAP;
CITIES/C1,C2,C3,C4/:DEM;
LINKS(PLANTS,CITIES):COST,SHIP;
ENDSETS
MIN=@SUM(LINKS:COST*SHIP);
@FOR(CITIES(J):
@SUM(PLANTS(I):SHIP(I,J))>DEM(J));
@FOR(PLANTS(I);
@SUM(CITIES(J):SHIP(I,J))<CAP(I));
DATA:
CAP, DEM, COST=@OLE(‘C:\MPROG\POWERCO.XLS’,‘Cap’,‘Demand’,‘Costs’);
ENDDATA
END

The key statement is

CAP, DEM, COST=@OLE(‘C:\MPROG\POWERCO.XLS’,‘Cap’,‘Demand’,‘Costs’);.

This statement reads the defined data sets CAP, DEM, and COSTS from the Powerco.xls
spreadsheet. Note that the full path location of our Excel file (enclosed in single quotes)
must be given first followed by the spreadsheet range names that contain the needed data.
The range names are paired with the data sets in the order listed. Therefore, CAP values
are found in range Cap and so on. The @OLE statement is very powerful, because a
spreadsheet will usually greatly simplify the creation of data for a LINGO program.

Spreadsheet Solution of Transportation Problems

In the file Powerco.xls, we show how easy it is to use the Excel Solver to find the opti-
mal solution to a transportation problem. After entering the plant capacities, city demands,
and unit shipping costs as shown, we enter trial values of the units shipped from each
plant to each city in the range B9:E11. Then we proceed as follows:

Step 1 Compute the total amount shipped out of each city by copying from F9 to
F10:F11 the formula

�SUM(B9:E9)

Step 2 Compute the total received by each city by copying from B12 to C12:E12 the 
formula

�SUM(B9:B11)

Step 3 Compute the total shipping cost in cell F2 with the formula

�SUMPRODUCT(B9:E11,Costs)

Note that the �SUMPRODUCT function works on rectangles as well as rows or columns
of numbers. Also, we have named the range of unit shipping costs (B4:E6) as COSTS.

Step 4 We now fill in the Solver window shown in Figure 4. We minimize total shipping
costs (F2) by changing units shipped from each plant to each city (B9:E11). We constrain
amount received by each city (B12:E12) to be at least each city’s demand (range name
Demand). We constrain the amount shipped out of each plant (F9:F11) to be at most each
plant’s capacity (range name Cap). After checking the Assume Nonnegative option and
Assume Linear Model option, we obtain the optimal solution shown in Figure 3. Note, of
course, that the objective function of the optimal solution found by Excel equals the ob-

Transpspread.lng

Powerco.xls
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jective function value found by LINGO and our hand solution. If the problem had multi-
ple optimal solutions, then it is possible that the values of the shipments found by LINGO,
Excel, and our hand solution might be different.

P R O B L E M S
Group A

F I G U R E  4

1 A company supplies goods to three customers, who each
require 30 units. The company has two warehouses.
Warehouse 1 has 40 units available, and warehouse 2 has 30
units available. The costs of shipping 1 unit from warehouse
to customer are shown in Table 7. There is a penalty for each
unmet customer unit of demand: With customer 1, a penalty
cost of $90 is incurred; with customer 2, $80; and with
customer 3, $110. Formulate a balanced transportation
problem to minimize the sum of shortage and shipping costs.

2 Referring to Problem 1, suppose that extra units could
be purchased and shipped to either warehouse for a total
cost of $100 per unit and that all customer demand must be
met. Formulate a balanced transportation problem to
minimize the sum of purchasing and shipping costs.

3 A shoe company forecasts the following demands during
the next six months: month 1—200; month 2—260; month
3—240; month 4—340; month 5—190; month 6—150. It
costs $7 to produce a pair of shoes with regular-time labor
(RT) and $11 with overtime labor (OT). During each month,
regular production is limited to 200 pairs of shoes, and

overtime production is limited to 100 pairs. It costs $1 per
month to hold a pair of shoes in inventory. Formulate a
balanced transportation problem to minimize the total cost
of meeting the next six months of demand on time.

4 Steelco manufactures three types of steel at different
plants. The time required to manufacture 1 ton of steel
(regardless of type) and the costs at each plant are shown in
Table 8. Each week, 100 tons of each type of steel (1, 2, and
3) must be produced. Each plant is open 40 hours per week.

a Formulate a balanced transportation problem to min-
imize the cost of meeting Steelco’s weekly requirements.
b Suppose the time required to produce 1 ton of steel
depends on the type of steel as well as on the plant at
which it is produced (see Table 9, page 372). Could a
transportation problem still be formulated?

5 A hospital needs to purchase 3 gallons of a perishable
medicine for use during the current month and 4 gallons for
use during the next month. Because the medicine is

TA B L E  7

To

From Customer 1 Customer 2 Customer 3

Warehouse 1 $15 $35 $25
Warehouse 2 $10 $50 $40

TA B L E  8

Cost ($)
Time

Plant Steel 1 Steel 2 Steel 3 (minutes)

1 60 40 28 20
2 50 30 30 16
3 43 20 20 15



perishable, it can only be used during the month of purchase.
Two companies (Daisy and Laroach) sell the medicine. The
medicine is in short supply. Thus, during the next two
months, the hospital is limited to buying at most 5 gallons
from each company. The companies charge the prices shown
in Table 10. Formulate a balanced transportation model to
minimize the cost of purchasing the needed medicine.

6 A bank has two sites at which checks are processed. Site
1 can process 10,000 checks per day, and site 2 can process
6,000 checks per day. The bank processes three types of
checks: vendor, salary, and personal. The processing cost
per check depends on the site (see Table 11). Each day,
5,000 checks of each type must be processed. Formulate a
balanced transportation problem to minimize the daily cost
of processing checks.

7† The U.S. government is auctioning off oil leases at two
sites: 1 and 2. At each site, 100,000 acres of land are to be
auctioned. Cliff Ewing, Blake Barnes, and Alexis Pickens are
bidding for the oil. Government rules state that no bidder can
receive more than 40% of the land being auctioned. Cliff has
bid $1,000/acre for site 1 land and $2,000/acre for site 2 land.
Blake has bid $900/acre for site 1 land and $2,200/acre for site
2 land. Alexis has bid $1,100/acre for site 1 land and
$1,900/acre for site 2 land. Formulate a balanced transportation
model to maximize the government’s revenue.
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8 The Ayatola Oil Company controls two oil fields. Field
1 can produce up to 40 million barrels of oil per day, and
field 2 can produce up to 50 million barrels of oil per day.
At field 1, it costs $3 to extract and refine a barrel of oil; at
field 2, the cost is $2. Ayatola sells oil to two countries:
England and Japan. The shipping cost per barrel is shown
in Table 12. Each day, England is willing to buy up to 40
million barrels (at $6 per barrel), and Japan is willing to
buy up to 30 million barrels (at $6.50 per barrel). Formulate
a balanced transportation problem to maximize Ayatola’s
profits.

9 For the examples and problems of this section, discuss
whether it is reasonable to assume that the proportionality
assumption holds for the objective function.

10 Touche Young has three auditors. Each can work as
many as 160 hours during the next month, during which
time three projects must be completed. Project 1 will take
130 hours; project 2, 140 hours; and project 3, 160 hours.
The amount per hour that can be billed for assigning each
auditor to each project is given in Table 13. Formulate a
balanced transportation problem to maximize total billings
during the next month.

Group B

11‡ Paperco recycles newsprint, uncoated paper, and
coated paper into recycled newsprint, recycled uncoated
paper, and recycled coated paper. Recycled newsprint can
be produced by processing newsprint or uncoated paper.
Recycled coated paper can be produced by recycling any
type of paper. Recycled uncoated paper can be produced by
processing uncoated paper or coated paper. The process
used to produce recycled newsprint removes 20% of the
input’s pulp, leaving 80% of the input’s pulp for recycled
paper. The process used to produce recycled coated paper
removes 10% of the input’s pulp. The process used to
produce recycled uncoated paper removes 15% of the input’s
pulp. The purchasing costs, processing costs, and availability
of each type of paper are shown in Table 14. To meet demand,

TA B L E  9

Time (minutes)

Plant Steel 1 Steel 2 Steel 3

1 15 12 15
2 15 15 20
3 10 10 15

TA B L E  10

Current Month’s Next Month’s
Price per Price per

Company Gallon ($) Gallon ($)

Daisy 800 720
Laroach 710 750

TA B L E  11

Site (¢)

Checks 1 2

Vendor 5 3
Salary 4 4
Personal 2 5

†This problem is based on Jackson (1980). ‡This problem is based on Glassey and Gupta (1974).

TA B L E  12

To ($)

From ($) England Japan

Field 1 1 2
Field 2 2 1

TA B L E  13

Project ($)

Auditor 1 2 3

1 120 150 190
2 140 130 120
3 160 140 150



7.2 Finding Basic Feasible Solutions for Transportation Problems
Consider a balanced transportation problem with m supply points and n demand points.
From (2), we see that such a problem contains m � n equality constraints. From our ex-
perience with the Big M method and the two-phase simplex method, we know it is diffi-
cult to find a bfs if all of an LP’s constraints are equalities. Fortunately, the special struc-
ture of a balanced transportation problem makes it easy for us to find a bfs.

Before describing three methods commonly used to find a bfs to a balanced trans-
portation problem, we need to make the following important observation. If a set of val-
ues for the xij’s satisfies all but one of the constraints of a balanced transportation prob-
lem, then the values for the xij’s will automatically satisfy the other constraint. For
example, in the Powerco problem, suppose a set of values for the xij’s is known to satisfy
all the constraints with the exception of the first supply constraint. Then this set of xij’s
must supply d1 � d2 � d3 � d4 � 125 million kwh to cities 1–4 and supply s2 � s3 �
125 � s1 � 90 million kwh from plants 2 and 3. Thus, plant 1 must supply 125 �
(125 � s1) � 35 million kwh, so the xij’s must also satisfy the first supply constraint.

The preceding discussion shows that when we solve a balanced transportation prob-
lem, we may omit from consideration any one of the problem’s constraints and solve an
LP having m � n � 1 constraints. We (arbitrarily) assume that the first supply constraint
is omitted from consideration.

In trying to find a bfs to the remaining m � n � 1 constraints, you might think that
any collection of m � n � 1 variables would yield a basic solution. Unfortunately, this is
not the case. For example, consider (3), a balanced transportation problem. (We omit the
costs because they are not needed to find a bfs.)

(3)
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Paperco must produce at least 250 tons of recycled newsprint
pulp, at least 300 tons of recycled uncoated paper pulp, and
at least 150 tons of recycled coated paper pulp. Formulate
a balanced transportation problem that can be used to
minimize the cost of meeting Paperco’s demands.

12 Explain how each of the following would modify the
formulation of the Sailco problem as a balanced trans-
portation problem:

a Suppose demand could be backlogged at a cost of
$30/sailboat/month. (Hint: Now it is permissible to ship
from, say, month 2 production to month 1 demand.)
b If demand for a sailboat is not met on time, the sale
is lost and an opportunity cost of $450 is incurred.
c Sailboats can be held in inventory for a maximum of
two months.
d At a cost of $440/sailboat, Sailco can purchase up to
10 sailboats/month from a subcontractor.

TA B L E  14

Purchase Processing
Cost per Ton Cost per Ton
of Pulp ($) of Input ($) Availability

Newsprint 10 500
Coated paper 19 300
Uncoated paper 18 200
NP used for RNP 3
NP used for RCP 4
UCP used for RNP 4
UCP used for RUP 1
UCP used for RCP 6
CP used for RUP 5
CP used for RCP 3

3

4

5

2 4



In matrix form, the constraints for this balanced transportation problem may be written as

� � � � � � � (3�)

After dropping the first supply constraint, we obtain the following linear system:

� � � � � � � (3�)

A basic solution to (3�) must have four basic variables. Suppose we try BV � {x11, x12,
x21, x22}. Then

B � � �
For {x11, x12, x21, x22} to yield a basic solution, it must be possible to use EROs to

transform B to I4. Because rank B � 3 and EROs do not change the rank of a matrix,
there is no way that EROs can be used to transform B into I4. Thus, BV � {x11, x12, x21,
x22} cannot yield a basic solution to (3�). Fortunately, the simple concept of a loop may
be used to determine whether an arbitrary set of m � n � 1 variables yields a basic so-
lution to a balanced transportation problem.

D E F I N I T I O N ■ An ordered sequence of at least four different cells is called a loop if

1 Any two consecutive cells lie in either the same row or same column

2 No three consecutive cells lie in the same row or column

3 The last cell in the sequence has a row or column in common with the first cell
in the sequence ■

In the definition of a loop, the first cell is considered to follow the last cell, so the loop
may be thought of as a closed path. Here are some examples of the preceding definition:
Figure 5 represents the loop (2, 1)–(2, 4)–(4, 4)–(4, 1). Figure 6 represents the loop 
(1, 1)–(1, 2)–(2, 2)–(2, 3)–(4, 3)–(4, 5)–(3, 5)–(3, 1). In Figure 7, the path (1, 1)–(1, 2)–
(2, 3)–(2, 1) does not represent a loop, because (1, 2) and (2, 3) do not lie in the same
row or column. In Figure 8, the path (1, 2)–(1, 3)–(1, 4)–(2, 4)–(2, 2) does not represent
a loop, because (1, 2), (1, 3), and (1, 4) all lie in the same row.

Theorem 1 (which we state without proof ) shows why the concept of a loop is important.
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F I G U R E  5

F I G U R E  6

F I G U R E  7

F I G U R E  8

T H E O R E M  1

In a balanced transportation problem with m supply points and n demand points, the
cells corresponding to a set of m � n � 1 variables contain no loop if and only if
the m � n � 1 variables yield a basic solution.

Theorem 1 follows from the fact that a set of m � n � 1 cells contains no loop if and
only if the m � n � 1 columns corresponding to these cells are linearly independent. Be-
cause (1, 1)–(1, 2)–(2, 2)–(2, 1) is a loop, Theorem 1 tells us that {x11, x12, x22, x21} can-
not yield a basic solution for (3�). On the other hand, no loop can be formed with the cells
(1, 1)–(1, 2)–(1, 3)–(2, 1), so {x11, x12, x13, x21} will yield a basic solution to (3�).

We are now ready to discuss three methods that can be used to find a basic feasible so-
lution for a balanced transportation problem:

1 northwest corner method

2 minimum-cost method

3 Vogel’s method



Northwest Corner Method for Finding 
a Basic Feasible Solution

To find a bfs by the northwest corner method, we begin in the upper left (or northwest)
corner of the transportation tableau and set x11 as large as possible. Clearly, x11 can be no
larger than the smaller of s1 and d1. If x11 � s1, cross out the first row of the transporta-
tion tableau; this indicates that no more basic variables will come from row 1. Also change
d1 to d1 � s1. If x11 � d1, cross out the first column of the transportation tableau; this in-
dicates that no more basic variables will come from column 1. Also change s1 to s1 � d1.
If x11 � s1 � d1, cross out either row 1 or column 1 (but not both). If you cross out row
1, change d1 to 0; if you cross out column 1, change s1 to 0.

Continue applying this procedure to the most northwest cell in the tableau that does
not lie in a crossed-out row or column. Eventually, you will come to a point where there
is only one cell that can be assigned a value. Assign this cell a value equal to its row or
column demand, and cross out both the cell’s row and column. A basic feasible solution
has now been obtained.

We illustrate the use of the northwest corner method by finding a bfs for the balanced
transportation problem in Table 15. (We do not list the costs because they are not needed
to apply the algorithm.) We indicate the crossing out of a row or column by placing an �
by the row’s supply or column’s demand.

To begin, we set x11 � min{5, 2} � 2. Then we cross out column 1 and change s1 to
5 � 2 � 3. This yields Table 16. The most northwest remaining variable is x12. We set
x12 � min{3, 4} � 3. Then we cross out row 1 and change d2 to 4 � 3 � 1. This yields
Table 17. The most northwest available variable is now x22. We set x22 � min{1, 1} � 1.
Because both the supply and demand corresponding to the cell are equal, we may cross
out either row 2 or column 2 (but not both). For no particular reason, we choose to cross
out row 2. Then d2 must be changed to 1 � 1 � 0. The resulting tableau is Table 18. At
the next step, this will lead to a degenerate bfs.
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The most northwest available cell is now x32, so we set x32 � min{3, 0} � 0. Then we
cross out column 2 and change s3 to 3 � 0 � 3. The resulting tableau is Table 19. We now
set x33 � min{3, 2} � 2. Then we cross out column 3 and reduce s3 to 3 � 2 � 1. The
resulting tableau is Table 20. The only available cell is x34. We set x34 � min{1, 1} � 1.
Then we cross out row 3 and column 4. No cells are available, so we are finished. We have
obtained the bfs x11 � 2, x12 � 3, x22 � 1, x32 � 0, x33 � 2, x34 � 1.

Why does the northwest corner method yield a bfs? The method ensures that no basic
variable will be assigned a negative value (because no right-hand side ever becomes nega-
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tive) and also that each supply and demand constraint is satisfied (because every row and col-
umn is eventually crossed out). Thus, the northwest corner method yields a feasible solution.

To complete the northwest corner method, m � n rows and columns must be crossed
out. The last variable assigned a value results in a row and column being crossed out, so
the northwest corner method will assign values to m � n � 1 variables. The variables
chosen by the northwest corner method cannot form a loop, so Theorem 1 implies that
the northwest corner method must yield a bfs.

Minimum-Cost Method for Finding a Basic Feasible Solution

The northwest corner method does not utilize shipping costs, so it can yield an initial bfs
that has a very high shipping cost. Then determining an optimal solution may require sev-
eral pivots. The minimum-cost method uses the shipping costs in an effort to produce a
bfs that has a lower total cost. Hopefully, fewer pivots will then be required to find the
problem’s optimal solution.

To begin the minimum-cost method, find the variable with the smallest shipping cost (call
it xij). Then assign xij its largest possible value, min{si, dj}. As in the northwest 
corner method, cross out row i or column j and reduce the supply or demand of the 
noncrossed-out row or column by the value of xij. Then choose from the cells that do not lie
in a crossed-out row or column the cell with the minimum shipping cost and repeat the pro-
cedure. Continue until there is only one cell that can be chosen. In this case, cross out both
the cell’s row and column. Remember that (with the exception of the last variable) if a vari-
able satisfies both a supply and demand constraint, only cross out a row or column, not both.

To illustrate the minimum cost method, we find a bfs for the balanced transportation prob-
lem in Table 21. The variable with the minimum shipping cost is x22. We set x22 � min{10,
8} � 8. Then we cross out column 2 and reduce s2 to 10 � 8 � 2 (Table 22). We could now
choose either x11 or x21 (both having shipping costs of 2). We arbitrarily choose x21 and set
x21 � min{2, 12} � 2. Then we cross out row 2 and change d1 to 12 � 2 � 10 (Table 23).
Now we set x11 � min{5, 10} � 5, cross out row 1, and change d1 to 10 � 5 � 5 (Table 24).
The minimum cost that does not lie in a crossed-out row or column is x31. We set x31 �
min{15, 5} � 5, cross out column 1, and reduce s3 to 15 � 5 � 10 (Table 25). Now we set
x33 � min{10, 4} � 4, cross out column 3, and reduce s3 to 10 � 4 � 6 (Table 26). The only
cell that we can choose is x34. We set x34 � min{6, 6} and cross out both row 3 and column
4. We have now obtained the bfs: x11 � 5, x21 � 2, x22 � 8, x31 � 5, x33 � 4, and x34 � 6.

Because the minimum-cost method chooses variables with small shipping costs to be
basic variables, you might think that this method would always yield a bfs with a rela-
tively low total shipping cost. The following problem shows how the minimum-cost
method can be fooled into choosing a relatively high-cost bfs.
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If we apply the minimum-cost method to Table 27, we set x11 � 10 and cross out row
1. This forces us to make x22 and x23 basic variables, thereby incurring their high ship-
ping costs. Thus, the minimum-cost method will yield a costly bfs. Vogel’s method for
finding a bfs usually avoids extremely high shipping costs.

Vogel’s Method for Finding a Basic Feasible Solution

Begin by computing for each row (and column) a “penalty” equal to the difference be-
tween the two smallest costs in the row (column). Next find the row or column with the
largest penalty. Choose as the first basic variable the variable in this row or column that
has the smallest shipping cost. As described in the northwest corner and minimum-cost
methods, make this variable as large as possible, cross out a row or column, and change
the supply or demand associated with the basic variable. Now recompute new penalties
(using only cells that do not lie in a crossed-out row or column), and repeat the proce-
dure until only one uncrossed cell remains. Set this variable equal to the supply or de-
mand associated with the variable, and cross out the variable’s row and column. A bfs has
now been obtained.

We illustrate Vogel’s method by finding a bfs to Table 28. Column 2 has the largest
penalty, so we set x12 � min{10, 5} � 5. Then we cross out column 2 and reduce s1 to
10 � 5 � 5. After recomputing the new penalties (observe that after a column is crossed
out, the column penalties will remain unchanged), we obtain Table 29. The largest penalty
now occurs in column 3, so we set x13 � min{5, 5}. We may cross out either row 1 or
column 3. We arbitrarily choose to cross out column 3, and we reduce s1 to 5 � 5 � 0.
Because each row has only one cell that is not crossed out, there are no row penalties.
The resulting tableau is Table 30. Column 1 has the only (and, of course, the largest)
penalty. We set x11 � min{0, 15} � 0, cross out row 1, and change d1 to 15 � 0 � 15.
The result is Table 31. No penalties can be computed, and the only cell that is not in a
crossed-out row or column is x21. Therefore, we set x21 � 15 and cross out both column
1 and row 2. Our application of Vogel’s method is complete, and we have obtained the
bfs: x11 � 0, x12 � 5, x13 � 5, and x21 � 15 (see Table 32).
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Observe that Vogel’s method avoids the costly shipments associated with x22 and x23.
This is because the high shipping costs resulted in large penalties that caused Vogel’s
method to choose other variables to satisfy the second and third demand constraints.

Of the three methods we have discussed for finding a bfs, the northwest corner method
requires the least effort, and Vogel’s method requires the most effort. Extensive research
[Glover et al. (1974)] has shown, however, that when Vogel’s method is used to find an
initial bfs, it usually takes substantially fewer pivots than if the other two methods had
been used. For this reason, the northwest corner and minimum-cost methods are rarely
used to find a basic feasible solution to a large transportation problem.

P R O B L E M S
Group A
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1 Use the northwest corner method to find a bfs for
Problems 1, 2, and 3 of Section 7.1.

2 Use the minimum-cost method to find a bfs for Problems
4, 7, and 8 of Section 7.1. (Hint: For a maximization
problem, call the minimum-cost method the maximum-
profit method or the maximum-revenue method.)

3 Use Vogel’s method to find a bfs for Problems 5 and 6
of Section 7.1.

4 How should Vogel’s method be modified to solve a
maximization problem?

7.3 The Transportation Simplex Method
In this section, we show how the simplex algorithm simplifies when a transportation prob-
lem is solved. We begin by discussing the pivoting procedure for a transportation problem.

Recall that when the pivot row was used to eliminate the entering basic variable from
other constraints and row 0, many multiplications were usually required. In solving a
transportation problem, however, pivots require only additions and subtractions.

How to Pivot in a Transportation Problem

By using the following procedure, the pivots for a transportation problem may be per-
formed within the confines of the transportation tableau:

Step 1 Determine (by a criterion to be developed shortly) the variable that should enter
the basis.

Step 2 Find the loop (it can be shown that there is only one loop) involving the entering
variable and some of the basic variables.

Step 3 Counting only cells in the loop, label those found in step 2 that are an even num-



ber (0, 2, 4, and so on) of cells away from the entering variable as even cells. Also label
those that are an odd number of cells away from the entering variable as odd cells.

Step 4 Find the odd cell whose variable assumes the smallest value. Call this value 	.
The variable corresponding to this odd cell will leave the basis. To perform the pivot, de-
crease the value of each odd cell by 	 and increase the value of each even cell by 	. The
values of variables not in the loop remain unchanged. The pivot is now complete. If 	 �
0, then the entering variable will equal 0, and an odd variable that has a current value of
0 will leave the basis. In this case, a degenerate bfs existed before and will result after the
pivot. If more than one odd cell in the loop equals 	, you may arbitrarily choose one of
these odd cells to leave the basis; again, a degenerate bfs will result.

We illustrate the pivoting procedure on the Powerco example. When the northwest cor-
ner method is applied to the Powerco example, the bfs in Table 33 is found. For this bfs,
the basic variables are x11 � 35, x21 � 10, x22 � 20, x23 � 20, x33 � 10, and x34 � 30.

Suppose we want to find the bfs that would result if x14 were entered into the basis.
The loop involving x14 and some of the basic variables is

E O E O E O

(1, 4)–(3, 4)–(3, 3)–(2, 3)–(2, 1)–(1, 1)

In this loop, (1, 4), (3, 3), and (2, 1) are the even cells, and (1, 1), (3, 4), and (2, 3) are
the odd cells. The odd cell with the smallest value is x23 � 20. Thus, after the pivot, x23

will have left the basis. We now add 20 to each of the even cells and subtract 20 from
each of the odd cells. The bfs in Table 34 results. Because each row and column has as
many �20s as �20s, the new solution will satisfy each supply and demand constraint.
By choosing the smallest odd variable (x23) to leave the basis, we have ensured that all
variables will remain nonnegative. Thus, the new solution is feasible. There is no loop 
involving the cells (1, 1), (1, 4), (2, 1), (2, 2), (3, 3), and (3, 4), so the new solution is a
bfs. After the pivot, the new bfs is x11 � 15, x14 � 20, x21 � 30, x22 � 20, x33 � 30, and
x34 � 10, and all other variables equal 0.
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The preceding illustration of the pivoting procedure makes it clear that each pivot in a
transportation problem involves only additions and subtractions. Using this fact, we can
show that if all the supplies and demands for a transportation problem are integers, then
the transportation problem will have an optimal solution in which all the variables are
integers. Begin by observing that, by the northwest corner method, we can find a bfs in
which each variable is an integer. Each pivot involves only additions and subtractions, so
each bfs obtained by performing the simplex algorithm (including the optimal solution)
will assign all variables integer values. The fact that a transportation problem with inte-
ger supplies and demands has an optimal integer solution is useful, because it ensures that
we need not worry about whether the Divisibility Assumption is justified.

Pricing Out Nonbasic Variables (Based on Chapter 6)

To complete our discussion of the transportation simplex, we now show how to compute
row 0 for any bfs. From Section 6.2, we know that for a bfs in which the set of basic vari-
ables is BV, the coefficient of the variable xij (call it ccc�ij) in the tableau’s row 0 is given by

c�ij � cBVB�1aij � cij

where cij is the objective function coefficient for xij and aij is the column for xij in the
original LP (we are assuming that the first supply constraint has been dropped).

Because we are solving a minimization problem, the current bfs will be optimal if all
the cc�ij’s are nonpositive; otherwise, we enter into the basis the variable with the most pos-
itive cc�ij.

After determining cBVB�1, we can easily determine cc�ij. Because the first constraint has
been dropped, cBVB�1 will have m � n � 1 elements. We write

cBVB�1 � [u2 u3 
 
 
 um v1 v2 
 
 
 vn]

where u2, u3, . . . , um are the elements of cBVB�1 corresponding to the m � 1 supply con-
straints, and v1, v2, . . . , vn are the elements of cBVB�1 corresponding to the n demand
constraints.

To determine cBVB�1, we use the fact that in any tableau, each basic variable xij must
have cc�ij � 0. Thus, for each of the m � n � 1 variables in BV,

cBVB�1aij � cij � 0 (4)

For a transportation problem, the equations in (4) are very easy to solve. To illustrate the
solution of (4), we find cBVB�1 for (5), by applying the northwest corner method bfs to
the Powerco problem.

(5)
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For this bfs, BV � {x11, x21, x22, x23, x33, x34}. Applying (4) we obtain

cc�11 � [u2 u3 v1 v2 v3 v4] � � � 8 � v1 � 8 � 0

0

0

1

0

0

0
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cc�21 � [u2 u3 v1 v2 v3 v4] � � � 9 � u2 � v1 � 9 � 0

1

0

1

0

0

0

cc�22 � [u2 u3 v1 v2 v3 v4] � � � 12 � u2 � v2 � 12 � 0

1

0

0

1

0

0

cc�23 � [u2 u3 v1 v2 v3 v4] � � � 13 � u2 � v3 � 13 � 0

1

0

0

0

1

0

cc�33 � [u2 u3 v1 v2 v3 v4] � � � 16 � u3 � v3 � 16 � 0

0

1

0

0

1

0

c�34 � [u2 u3 v1 v2 v3 v4] � � � 5 � u3 � v4 � 5 � 0

For each basic variable xij (except those having i � 1), we see that (4) reduces to ui � vj �
cij. If we define u1 � 0, we see that (4) reduces to ui � vj � cij for all basic variables. Thus,
to solve for cBVB�1, we must solve the following system of m � n equations: u1 � 0, ui �
vj � cij for all basic variables.

For (5), we find cBVB�1 by solving

0

1

0

0

0

1



u1 � u1 � 0 (6)

u1 � v1 � 8 (7)

u2 � v1 � 9 (8)

u2 � v2 � 12 (9)

u2 � v3 � 13 (10)

u3 � v3 � 16 (11)

u3 � v4 � 5 (12)

From (7), v1 � 8. From (8), u2 � 1. Then (9) yields v2 � 11, and (10) yields v3 � 12.
From (11), u3 � 4. Finally, (12) yields v4 � 1. For each nonbasic variable, we now com-
pute cc�ij � ui � vj � cij. We obtain

cc�12 � 0 � 11 � 6 � 5� cc�13 � 0 � 12 � 10 � 2

cc�14 � 0 � 1 � 9 � �8 ccc�24 � 1 � 1 � 7 � �5

cc�31 � 4 � 8 � 14 � �2 ccc�32 � 4 � 11 � 9 � 6

Because cc�32 is the most positive cc�ij, we would next enter x32 into the basis. Each unit of
x32 that is entered into the basis will decrease Powerco’s cost by $6.

How to Determine the Entering Nonbasic Variable 
(Based on Chapter 5)

For readers who have not covered Chapter 6, we now discuss how to determine whether a
bfs is optimal, and, if it is not, how to determine which nonbasic variable should enter the
basis. Let �ui (i � 1, 2, . . . , m) be the shadow price of the ith supply constraint, and let �vj

( j � 1, 2, . . . , n) be the shadow price of the jth demand constraint. We assume that the first
supply constraint has been dropped, so we may set �u1 � 0. From the definition of shadow
price, if we were to increase the right-hand side of the ith supply and jth demand constraint
by 1, the optimal z-value would decrease by �ui � vj. Equivalently, if we were to decrease
the right-hand side of the ith supply and jth demand constraint by 1, the optimal z-value
would increase by �ui � vj. Now suppose xij is a nonbasic variable. Should we enter xij into
the basis? Observe that if we increase xij by 1, costs directly increase by cij. Also, increasing
xij by 1 means that one less unit will be shipped from supply point i and one less unit will
be shipped to demand point j. This is equivalent to reducing the right-hand sides of the ith
supply constraint and jth demand constraint by 1. This will increase z by �ui � vj. Thus, in-
creasing xij by 1 will increase z by a total of cij � ui � vj. So if cij � ui � vj � 0 (or ui �
vj � cij � 0) for all nonbasic variables, the current bfs will be optimal. If, however, a non-
basic variable xij has cij � ui � vj � 0 (or ui � vj � cij � 0), then z can be decreased by ui �
vj � cij per unit of xij by entering xij into the basis. Thus, we may conclude that if ui � vj �
cij � 0 for all nonbasic variables, then the current bfs is optimal. Otherwise, the nonbasic
variable with the most positive value of ui � vj � cij should enter the basis. How do we find
the ui’s and vj’s? The coefficient of a nonbasic variable xij in row 0 of any tableau is the
amount by which a unit increase in xij will decrease z, so we can conclude that the coefficient
of any nonbasic variable (and, it turns out, any basic variable) in row 0 is ui � vj � cij. So
we may solve for the ui’s and vj’s by solving the following system of equations: u1 � 0 and
ui � vj � cij � 0 for all basic variables.

To illustrate the previous discussion, consider the bfs for the Powerco problem shown
in (5).
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(5)

W e
find the ui’s and vj’s by solving

u1 � u1 � 0 (6)

u1 � v1 � 8 (7)

u2 � v1 � 9 (8)

u2 � v2 � 12 (9)

u2 � v3 � 13 (10)

u3 � v3 � 16 (11)

u3 � v4 � 5 (12)

From (7), v1 � 8. From (8), u2 � 1. Then (9) yields v2 � 11, and (10) yields v3 � 12.
From (11), u3 � 4. Finally, (12) yields v4 � 1. For each nonbasic variable, we now com-
pute cc�ij � ui � vj � cij. We obtain

cc�12 � 0 � 11 � 6 � 5� cc�13 � 0 � 12 � 10 � 2

cc�14 � 0 � 1 � 9 � �8 cc�24 � 1 � 1 � 7 � �5

cc�31 � 4 � 8 � 14 � �2 cc�32 � 4 � 11 � 9 � 6

Because cc�32 is the most positive cc�ij, we would next enter x32 into the basis. Each unit of
x32 that is entered into the basis will decrease Powerco’s cost by $6.

We can now summarize the procedure for using the transportation simplex to solve a
transportation (min) problem.

Summary and Illustration 
of the Transportation Simplex Method

Step 1 If the problem is unbalanced, balance it.

Step 2 Use one of the methods described in Section 7.2 to find a bfs.

Step 3 Use the fact that u1 � 0 and ui � vj � cij for all basic variables to find the 
[u1 u2 . . . um v1 v2 . . . vn] for the current bfs.

Step 4 If ui � vj � cij � 0 for all nonbasic variables, then the current bfs is optimal. If
this is not the case, then we enter the variable with the most positive ui � vj � cij into
the basis using the pivoting procedure. This yields a new bfs.

Step 5 Using the new bfs, return to steps 3 and 4.

For a maximization problem, proceed as stated, but replace step 4 by step 4
.

Step 4� If ui � vj � cij � 0 for all nonbasic variables, then the current bfs is optimal.
Otherwise, enter the variable with the most negative ui � vj � cij into the basis using the
pivoting procedure described earlier.
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We illustrate the procedure for solving a transportation problem by solving the Pow-
erco problem. We begin with the bfs (5). We have already determined that x32 should en-
ter the basis. As shown in Table 35, the loop involving x32 and some of the basic variables
is (3, 2)–(3, 3)–(2, 3)–(2, 2). The odd cells in this loop are (3, 3) and (2, 2). Because 
x33 � 10 and x22 � 20, the pivot will decrease the value of x33 and x22 by 10 and increase
the value of x32 and x23 by 10. The resulting bfs is shown in Table 36. The ui’s and vj’s
for the new bfs were obtained by solving

u2 � u1 � 0 u2 � v3 � 13

u2 � v2 � 12 u2 � v1 � 9

u3 � v4 � 5 u3 � v2 � 9

u1 � v1 � 82 u2 � v1 � 9

In computing ccc�ij � ui � vj � cij for each nonbasic variable, we find that c�12 � 5, 
cc�24 � 1, and ccc�13 � 2 are the only positive cc�ij’s. Thus, we next enter x12 into the basis. The
loop involving x12 and some of the basic variables is (1, 2)–(2, 2)–(2, 1)–(1, 1). The odd
cells are (2, 2) and (1, 1). Because x22 � 10 is the smallest entry in an odd cell, we de-
crease x22 and x11 by 10 and increase x12 and x21 by 10. The resulting bfs is shown in
Table 37. For this bfs, the ui’s and vj’s were determined by solving

u1 � u1 � 0 u1 � v2 � 6

u2 � v1 � 9 u3 � v2 � 9

u1 � v1 � 8 u3 � v4 � 5

u2 � v3 � 13 u3 � v4 � 5

In computing cc�ij for each nonbasic variable, we find that the only positive cc�ij is cc�13 �
2. Thus, x13 enters the basis. The loop involving x13 and some of the basic variables is 
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(1, 3)–(2, 3)–(2, 1)–(1, 1). The odd cells are x23 and x11. Because x11 � 25 is the smallest
entry in an odd cell, we decrease x23 and x11 by 25 and increase x13 and x21 by 25. The 
resulting bfs is shown in Table 38. For this bfs, the ui’s and vj’s were obtained by solving

u2 � u1 � 0 u2 � v3 � 13

u2 � v1 � 9 u1 � v3 � 10

u3 � v4 � 5 u3 � v2 � 9

u1 � v2 � 6 u3 � v2 � 9

The reader should check that for this bfs, all c�ij � 0, so an optimal solution has been ob-
tained. Thus, the optimal solution to the Powerco problem is x12 � 10, x13 � 25, x21 �
45, x23 � 5, x32 � 10, x34 � 30, and

z � 6(10) � 10(25) � 9(45) � 13(5) � 9(10) � 5(30) � $1,020

P R O B L E M S
Group A
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Use the transportation simplex to solve Problems 1–8 in
Section 7.1. Begin with the bfs found in Section 7.2.



7.4 Sensitivity Analysis for Transportation Problems†

We have already seen that for a transportation problem, the determination of a bfs and of
row 0 for a given set of basic variables, as well as the pivoting procedure, all simplify. It
should therefore be no surprise that certain aspects of the sensitivity analysis discussed in
Section 6.3 can be simplified. In this section, we discuss the following three aspects of
sensitivity analysis for the transportation problem:

Change 1 Changing the objective function coefficient of a nonbasic variable.

Change 2 Changing the objective function coefficient of a basic variable.

Change 3 Increasing a single supply by � and a single demand by �.

We illustrate three changes using the Powerco problem. Recall from Section 7.3 that the
optimal solution for the Powerco problem was z � $1,020; the optimal tableau is Table 39.

Changing the Objective Function Coefficient 
of a Nonbasic Variable

As in Section 6.3, changing the objective function coefficient of a nonbasic variable xij

will leave the right-hand side of the optimal tableau unchanged. Thus, the current basis
will still be feasible. We are not changing cBVB�1, so the ui’s and vj’s remain unchanged.
In row 0, only the coefficient of xij will change. Thus, as long as the coefficient of xij in
the optimal row 0 is nonpositive, the current basis remains optimal.

To illustrate the method, we answer the following question: For what range of values of
the cost of shipping 1 million kwh of electricity from plant 1 to city 1 will the current basis
remain optimal? Suppose we change c11 from 8 to 8 � �. For what values of � will the cur-
rent basis remain optimal? Now c�11 � u1 � v1 � c11 � 0 � 6 � (8 � �) � �2 � �. Thus,
the current basis remains optimal for �2 � � � 0, or � � �2, and c11 � 8 � 2 � 6.

Changing the Objective Function Coefficient 
of a Basic Variable

Because we are changing cBVB�1, the coefficient of each nonbasic variable in row 0 may
change, and to determine whether the current basis remains optimal, we must find the new
ui’s and vj’s and use these values to price out all nonbasic variables. The current basis re-
mains optimal as long as all nonbasic variables price out nonpositive. To illustrate the
idea, we determine for the Powerco problem the range of values of the cost of shipping 1
million kwh from plant 1 to city 3 for which the current basis remains optimal.

Suppose we change c13 from 10 to 10 � �. Then the equation c�13 � 0 changes from
u1 � v3 � 10 to u1 � v3 � 10 � �. Thus, to find the ui’s and vj’s, we must solve the fol-
lowing equations:

u2 � u1 � 0 u3 � v2 � 90 � �

u2 � v1 � 9 u1 � v3 � 10 � �

u1 � v2 � 6 u3 � v4 � 50 � �

u2 � v3 � 13 u1 � v3 � 10 � �
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Solving these equations, we obtain u1 � 0, v2 � 6, v3 � 10 � �, v1 � 6 � �, u2 � 3 �
�, u3 � 3, and v4 � 2.

We now price out each nonbasic variable. The current basis will remain optimal as long
as each nonbasic variable has a nonpositive coefficient in row 0.

cc�11 � u1 � v1 � 8 � � � 2 � 0 for � � 2�

cc�14 � u1 � v4 � 9 � �7

cc�22 � u2 � v2 � 12 � �3 � � � 0 for � � �3

cc�24 � u2 � v4 � 7 � �2 � � � 0 for � � �2

cc�31 � u3 � v1 � 14 � �5 � � � 0 for � � 5�

cc�33 � u3 � v3 � 16 � � � 3 � 0 for � � 3�

Thus, the current basis remains optimal for �2 � � � 2, or 8 � 10 � 2 � c13 � 10 �
2 � 12.

Increasing Both Supply si and Demand dj by �

Observe that this change maintains a balanced transportation problem. Because the ui’s
and vj’s may be thought of as the negative of each constraint’s shadow prices, we know
from (37
) of Chapter 6 that if the current basis remains optimal,

New z-value � old z-value � �ui � �vj

For example, if we increase plant 1’s supply and city 2’s demand by 1 unit, then (new cost)
� 1,020 � 1(0) � 1(6) � $1,026.

We may also find the new values of the decision variables as follows:

1 If xij is a basic variable in the optimal solution, then increase xij by �.

2 If xij is a nonbasic variable in the optimal solution, then find the loop involving xij and
some of the basic variables. Find an odd cell in the loop that is in row i. Increase the value
of this odd cell by � and go around the loop, alternately increasing and then decreasing
current basic variables in the loop by �.

To illustrate the first situation, suppose we increase s1 and d2 by 2. Because x12 is a ba-
sic variable in the optimal solution, the new optimal solution will be the one shown in
Table 40. The new optimal z-value is 1,020 � 2u1 � 2v2 � $1,032. To illustrate the sec-
ond situation, suppose we increase both s1 and d1 by 1. Because x11 is a nonbasic vari-
able in the current optimal solution, we must find the loop involving x`11 and some of the
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basic variables. The loop is (1, 1)–(1, 3)–(2, 3)–(2, 1). The odd cell in the loop and row
1 is x13. Thus, the new optimal solution will be obtained by increasing both x13 and x21

by 1 and decreasing x23 by 1. This yields the optimal solution shown in Table 41. The new
optimal z-value is found from (new z-value) � 1,020 � v1 � v1 � $1,026. Observe that
if both s1 and d1 were increased by 6, the current basis would be infeasible. (Why?)

P R O B L E M S
Group A
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The following problems refer to the Powerco example.

1 Determine the range of values of c14 for which the
current basis remains optimal.

2 Determine the range of values of c34 for which the
current basis remains optimal.

3 If s2 and d3 are both increased by 3, what is the new
optimal solution?

4 If s3 and d3 are both decreased by 2, what is the new
optimal solution?

5 Two plants supply three customers with medical
supplies. The unit costs of shipping from the plants to the
customers, along with the supplies and demands, are given
in Table 42.

a The company’s goal is to minimize the cost of meet-
ing customers’ demands. Find two optimal bfs for this
transportation problem.
b Suppose that customer 2’s demand increased by one
unit. By how much would costs increase?

TA B L E  42

To

From Customer 1 Customer 2 Customer 3 Supply

Plant 1 $55 $65 $80 35
Plant 2 $10 $15 $25 50

Demand 10 10 10



7.5 Assignment Problems
Although the transportation simplex appears to be very efficient, there is a certain class
of transportation problems, called assignment problems, for which the transportation sim-
plex is often very inefficient. In this section, we define assignment problems and discuss
an efficient method that can be used to solve them.

Machineco has four machines and four jobs to be completed. Each machine must be as-
signed to complete one job. The time required to set up each machine for completing each
job is shown in Table 43. Machineco wants to minimize the total setup time needed to
complete the four jobs. Use linear programming to solve this problem.

Solution Machineco must determine which machine should be assigned to each job. We define (for
i, j � 1, 2, 3, 4)

xij � 1 if machine i is assigned to meet the demands of job j

xij � 0 if machine i is not assigned to meet the demands of job j

Then Machineco’s problem may be formulated as

min z � 14x11 � 5x12 � 8x13 � 7x14 � 2x21 � 12x22 � 6x23 � 5x24

min z � � 7x31 � 8x32 � 3x33 � 9x34 � 2x41 � 4x42 � 6x43 � 10x44

s.t. x11 � x12 � x13 � x14 � 1 (Machine constraints)

s.t. x21 � x22 � x23 � x24 � 1 (Machine constraints)

s.t. x31 � x32 � x33 � x34 � 1 (Machine constraints)
(13)

s.t. x41 � x42 � x43 � x44 � 1 (Machine constraints)

s.t. x11 � x21 � x31 � x41 � 1 (Job constraints)

s.t. x12 � x22 � x32 � x42 � 1 (Machine constraints)

s.t. x13 � x23 � x33 � x43 � 1 (Machine constraints)

s.t. x14 � x24 � x34 � x44 � 1 (Machine constraints)

s.t. xij � 0 or xij � 1 (Machine constraints)

The first four constraints in (13) ensure that each machine is assigned to a job, and the
last four ensure that each job is completed. If xij � 1, then the objective function will pick
up the time required to set up machine i for job j; if xij � 0, then the objective function
will not pick up the time required.

Ignoring for the moment the xij � 0 or xij � 1 restrictions, we see that Machineco faces
a balanced transportation problem in which each supply point has a supply of 1 and each
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TA B L E  43
Setup Times for Machineco

Time (Hours)

Machine Job 1 Job 2 Job 3 Job 4

1 14 5 8 7
2 2 12 6 5
3 7 8 3 9
4 2 4 6 10



demand point has a demand of 1. In general, an assignment problem is a balanced trans-
portation problem in which all supplies and demands are equal to 1. Thus, an assignment
problem is characterized by knowledge of the cost of assigning each supply point to each
demand point. The assignment problem’s matrix of costs is its cost matrix.

All the supplies and demands for the Machineco problem (and for any assignment
problem) are integers, so our discussion in Section 7.3 implies that all variables in Ma-
chineco’s optimal solution must be integers. Because the right-hand side of each con-
straint is equal to 1, each xij must be a nonnegative integer that is no larger than 1, so 
each xij must equal 0 or 1. This means that we can ignore the restrictions that xij � 0 or
1 and solve (13) as a balanced transportation problem. By the minimum cost method, we
obtain the bfs in Table 44. The current bfs is highly degenerate. (In any bfs to an m � m
assignment problem, there will always be m basic variables that equal 1 and m � 1 basic
variables that equal 0.)

We find that cc�43 � 1 is the only positive cc�ij. We therefore enter x43 into the basis. The
loop involving x43 and some of the basic variables is (4, 3)–(1, 3)–(1, 2)–(4, 2). The odd
variables in the loop are x13 and x42. Because x13 � x42 � 0, either x13 or x42 will leave
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TA B L E  44
Basic Feasible Solution 

for Machineco

Job 1 Job 2 Job 3 Job 4

�2

Machine 1

Machine 2

Machine 3

Machine 4

�5

�1

ui � 0

vj � 3 4 8 7
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TA B L E  45
x43 Has Entered the Basis

Job 1 Job 2 Job 3 Job 4

�2

Machine 1

Machine 2

Machine 3

Machine 4

�4

�1

ui � 0

vj � 3 5 7 7



the basis. We arbitrarily choose x13 to leave the basis. After performing the pivot, we ob-
tain the bfs in Table 45. All c�ij’s are now nonpositive, so we have obtained an optimal as-
signment: x12 � 1, x24 � 1, x33 � 1, and x41 � 1. Thus, machine 1 is assigned to job 2,
machine 2 is assigned to job 4, machine 3 is assigned to job 3, and machine 4 is assigned
to job 1. A total setup time of 5 � 5 � 3 � 2 � 15 hours is required.

The Hungarian Method

Looking back at our initial bfs, we see that it was an optimal solution. We did not know
that it was optimal, however, until performing one iteration of the transportation simplex.
This suggests that the high degree of degeneracy in an assignment problem may cause the
transportation simplex to be an inefficient way of solving assignment problems. For this
reason (and the fact that the algorithm is even simpler than the transportation simplex),
the Hungarian method is usually used to solve assignment (min) problems:

Step 1 Find the minimum element in each row of the m � m cost matrix. Construct a
new matrix by subtracting from each cost the minimum cost in its row. For this new ma-
trix, find the minimum cost in each column. Construct a new matrix (called the reduced
cost matrix) by subtracting from each cost the minimum cost in its column.

Step 2 Draw the minimum number of lines (horizontal, vertical, or both) that are needed
to cover all the zeros in the reduced cost matrix. If m lines are required, then an optimal
solution is available among the covered zeros in the matrix. If fewer than m lines are
needed, then proceed to step 3.

Step 3 Find the smallest nonzero element (call its value k) in the reduced cost matrix
that is uncovered by the lines drawn in step 2. Now subtract k from each uncovered ele-
ment of the reduced cost matrix and add k to each element that is covered by two lines.
Return to step 2.

R E M A R K S 1 To solve an assignment problem in which the goal is to maximize the objective function, mul-
tiply the profits matrix through by �1 and solve the problem as a minimization problem.
2 If the number of rows and columns in the cost matrix are unequal, then the assignment problem
is unbalanced. The Hungarian method may yield an incorrect solution if the problem is unbalanced.
Thus, any assignment problem should be balanced (by the addition of one or more dummy points)
before it is solved by the Hungarian method.
3 In a large problem, it may not be easy to find the minimum number of lines needed to cover all
zeros in the current cost matrix. For a discussion of how to find the minimum number of lines
needed, see Gillett (1976). It can be shown that if j lines are required, then only j “jobs” can be as-
signed to zero costs in the current matrix. This explains why the algorithm terminates when m lines
are required.

Solution of Machineco Example by the Hungarian Method

We illustrate the Hungarian method by solving the Machineco problem (see Table 46).

Step 1 For each row, we subtract the row minimum from each element in the row, ob-
taining Table 47. We now subtract 2 from each cost in column 4, obtaining Table 48.

Step 2 As shown, lines through row 1, row 3, and column 1 cover all the zeros in the re-
duced cost matrix. From remark 3, it follows that only three jobs can be assigned to zero
costs in the current cost matrix. Fewer than four lines are required to cover all the zeros,
so we proceed to step 3.
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Step 3 The smallest uncovered element equals 1, so we now subtract 1 from each uncov-
ered element in the reduced cost matrix and add 1 to each twice-covered element. The 
resulting matrix is Table 49. Four lines are now required to cover all the zeros. Thus, an op-
timal solution is available. To find an optimal assignment, observe that the only covered 0 in
column 3 is x33, so we must have x33 � 1. Also, the only available covered zero in column
2 is x12, so we set x12 � 1 and observe that neither row 1 nor column 2 can be used again.
Now the only available covered zero in column 4 is x24. Thus, we choose x24 � 1 (which now
excludes both row 2 and column 4 from further use). Finally, we choose x41 � 1.
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TA B L E  46
Cost Matrix for Machineco 14
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7 3
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12 6 5 2
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TA B L E  47
Cost Matrix After Row

Minimums Are Subtracted

0 0 20

9

5

4

4 0
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TA B L E  48
Cost Matrix After Column
Minimums Are Subtracted

9

5

4

4 0

6

0

0 3 0
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4
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Thus, we have found the optimal assignment x12 � 1, x24 � 1, x33 � 1, and x41 � 1.
Of course, this agrees with the result obtained by the transportation simplex.

Intuitive Justification of the Hungarian Method

To give an intuitive explanation of why the Hungarian algorithm works, we need to dis-
cuss the following result: If a constant is added to each cost in a row (or column) of a
balanced transportation problem, then the optimal solution to the problem is unchanged.
To show why the result is true, suppose we add k to each cost in the first row of the Ma-
chineco problem. Then

New objective function � old objective function � k(x11 � x12 � x13 � x14)

Because any feasible solution to the Machineco problem must have x11 � x12 � x13 �
x14 � 1,

New objective function � old objective function � k

Thus, the optimal solution to the Machineco problem remains unchanged if a constant k is
added to each cost in the first row. A similar argument applies to any other row or column.

Step 1 of the Hungarian method consists (for each row and column) of subtracting a
constant from each element in the row or column. Thus, step 1 creates a new cost matrix
having the same optimal solution as the original problem. Step 3 of the Hungarian method
is equivalent (see Problem 7 at the end of this section) to adding k to each cost that lies
in a covered row and subtracting k from each cost that lies in an uncovered column (or
vice versa). Thus, step 3 creates a new cost matrix with the same optimal solution as the
initial assignment problem. Each time step 3 is performed, at least one new zero is cre-
ated in the cost matrix.

Steps 1 and 3 also ensure that all costs remain nonnegative. Thus, the net effect of steps
1 and 3 of the Hungarian method is to create a sequence of assignment problems (with
nonnegative costs) that all have the same optimal solution as the original assignment prob-
lem. Now consider an assignment problem in which all costs are nonnegative. Any feasi-
ble assignment in which all the xij’s that equal 1 have zero costs must be optimal for such
an assignment problem. Thus, when step 2 indicates that m lines are required to cover all
the zeros in the cost matrix, an optimal solution to the original problem has been found.

Computer Solution of Assignment Problems

To solve assignment problems in LINDO, type in the objective function and constraints.
Also, many menu-driven programs require the user to input only a list of supply and de-
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TA B L E  49
Four Lines Required; Optimal

Solution Is Available
10

5

3

5 0

5

0

0 3 0

9 3 0

4

10



mand points (such as jobs and machines, respectively) and a cost matrix. LINGO can also
be used to easily solve assignment problems, including the following model to solve the
Machineco example (file Assign.lng).

MODEL:
1]SETS:
2]MACHINES/1..4/;
3]JOBS/1..4/;
4]LINKS(MACHINES,JOBS):COST,ASSIGN;
5]ENDSETS
6]MIN=@SUM(LINKS:COST*ASSIGN);
7]@FOR(MACHINES(I):
8]@SUM(JOBS(J):ASSIGN(I,J))<1);
9]@FOR(JOBS(J):

10]@SUM(MACHINES(I):ASSIGN(I,J))>1);
11]DATA:
12]COST = 14,5,8,7,
13]2,12,6,5,
14]7,8,3,9,
15]2,4,6,10;
16]ENDDATA

END

Line 2 defines the four supply points (machines), and line 3 defines the four demand
points ( jobs). In line 4, we define each possible combination of jobs and machines (16 in
all) and associate with each combination an assignment cost [for example COST(1, 2) �
5] and a variable ASSIGN(I,J). ASSIGN(I,J) equals 1 if machine i is used to perform job
j; it equals 0 otherwise. Line 5 ends the definition of sets.

Line 6 expresses the objective function by summing over all possible (I,J) combina-
tions the product of the assignment cost and ASSIGN(I,J). Lines 7–8 limit each MA-
CHINE to performing at most one job by forcing (for each machine) the sum of AS-
SIGN(I,J) over all JOBS to be at most 1. Lines 9–10 require that each JOB be completed
by forcing (for each job) the sum of ASSIGN(I,J) over all MACHINES to be at least 1.

Lines 12–16 input the cost matrix.
Observe that this LINGO program can (with simple editing) be used to solve any as-

signment problem (even if it is not balanced!). For example, if you had 10 machines avail-
able to perform 8 jobs, you would edit line 2 to indicate that there are 10 machines (re-
place 1..4 with 1..10). Then edit line 3 to indicate that there are 8 jobs. Finally, in line 12,
you would type the 80 entries of your cost matrix, following “COST�” and you would
be ready to roll!

R E M A R K 1 From our discussion of the Machineco example, it is unnecessary to force the ASSIGN(I,J) to
equal 0 or 1; this will happen automatically!

P R O B L E M S
Group A
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1 Five employees are available to perform four jobs. The
time it takes each person to perform each job is given in
Table 50. Determine the assignment of employees to jobs
that minimizes the total time required to perform the four
jobs.

2† Doc Councillman is putting together a relay team for
the 400-meter relay. Each swimmer must swim 100 meters
of breaststroke, backstroke, butterfly, or freestyle. Doc
believes that each swimmer will attain the times given in

†This problem is based on Machol (1970).

TA B L E  50

Time (hours)

Person Job 1 Job 2 Job 3 Job 4

1 22 18 30 18
2 18 — 27 22
3 26 20 28 28
4 16 22 — 14
5 21 — 25 28

Note: Dashes indicate person cannot do that particular job.

Assign.lng



Table 51. To minimize the team’s time for the race, which
swimmer should swim which stroke?

3 Tom Cruise, Freddy Prinze Jr., Harrison Ford, and Matt
LeBlanc are marooned on a desert island with Jennifer
Aniston, Courteney Cox, Gwyneth Paltrow, and Julia
Roberts. The “compatibility measures” in Table 52 indicate
how much happiness each couple would experience if they
spent all their time together. The happiness earned by a
couple is proportional to the fraction of time they spend
together. For example, if Freddie and Gwyneth spend half
their time together, they earn happiness of �

1
2

�(9) � 4.5.
a Let xij be the fraction of time that the ith man spends
with the jth woman. The goal of the eight people is to
maximize the total happiness of the people on the is-
land. Formulate an LP whose optimal solution will yield
the optimal values of the xij’s.
b Explain why the optimal solution in part (a) will
have four xij � 1 and twelve xij � 0. The optimal solu-
tion requires that each person spend all his or her time
with one person of the opposite sex, so this result is of-
ten referred to as the Marriage Theorem.
c Determine the marriage partner for each person.
d Do you think the Proportionality Assumption of lin-
ear programming is valid in this situation?

4 A company is taking bids on four construction jobs. Three
people have placed bids on the jobs. Their bids (in thousands
of dollars) are given in Table 53 (a * indicates that the person
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did not bid on the given job). Person 1 can do only one job,
but persons 2 and 3 can each do as many as two jobs.
Determine the minimum cost assignment of persons to jobs.

5 Greydog Bus Company operates buses between Boston
and Washington, D.C. A bus trip between these two cities
takes 6 hours. Federal law requires that a driver rest for four
or more hours between trips. A driver’s workday consists of
two trips: one from Boston to Washington and one from
Washington to Boston. Table 54 gives the departure times
for the buses. Greydog’s goal is to minimize the total
downtime for all drivers. How should Greydog assign crews
to trips? Note: It is permissible for a driver’s “day” to overlap
midnight. For example, a Washington-based driver can be
assigned to the Washington–Boston 3 P.M. trip and the
Boston–Washington 6 A.M. trip.

6 Five male characters (Billie, John, Fish, Glen, and Larry)
and five female characters (Ally, Georgia, Jane, Rene, and
Nell) from Ally McBeal are marooned on a desert island.
The problem is to determine what percentage of time each
woman on the island should spend with each man. For
example, Ally could spend 100% of her time with John or
she could “play the field” by spending 20% of her time with
each man. Table 55 shows a “happiness index” for each
potential pairing of a man and woman. For example, if Larry
and Rene spend all their time together, they earn 8 units of
happiness for the island.

a Play matchmaker and determine an allocation of
each man and woman’s time that earns the maximum to-
tal happiness for the island. Assume that happiness
earned by a couple is proportional to the amount of time
they spend together.
b Explain why the optimal solution to this problem
will, for any matrix of “happiness indices,” always in-
volve each woman spending all her time with one man.

TA B L E  51

Time (seconds)

Swimmer Free Breast Fly Back

Gary Hall 54 54 51 53
Mark Spitz 51 57 52 52
Jim Montgomery 50 53 54 56
Chet Jastremski 56 54 55 53

TA B L E  53

Job

Person 1 2 3 4

1 50 46 42 40
2 51 48 44 *
3 * 47 45 45

TA B L E  52

JA CC GP JR

TC 7 5 8 2
FP 7 8 9 4
HF 3 5 7 9
ML 5 5 6 7

TA B L E  54

Departure Departure
Trip Time Trip Time

Boston 1 6 A.M. Washington 1 5:30 A.M.
Boston 2 7:30 A.M. Washington 2 9 A.M.
Boston 3 11.30 A.M. Washington 3 3 P.M.
Boston 4 7 P.M. Washington 4 6:30 P.M.
Boston 5 12:30 A.M. Washington 5 12 midnight

TA B L E  55

Ally Georgia Jane Rene Nell

Billie 8 6 4 7 5
John 5 7 6 4 9
Fish 10 6 5 2 10
Glen 1 0 0 0 0
Larry 5 7 9 8 6



c What assumption made in the problem is needed for
the Marriage Theorem to hold?

Group B

7 Any transportation problem can be formulated as an
assignment problem. To illustrate the idea, determine an
assignment problem that could be used to find the optimal
solution to the transportation problem in Table 56. (Hint:
You will need five supply and five demand points).

8 The Chicago board of education is taking bids on the
city’s four school bus routes. Four companies have made the
bids in Table 57.

a Suppose each bidder can be assigned only one route.
Use the assignment method to minimize Chicago’s cost
of running the four bus routes.
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b Suppose that each company can be assigned two
routes. Use the assignment method to minimize
Chicago’s cost of running the four bus routes. (Hint:
Two supply points will be needed for each company.)

9 Show that step 3 of the Hungarian method is equivalent
to performing the following operations: (1) Add k to each
cost that lies in a covered row. (2) Subtract k from each cost
that lies in an uncovered column.

10 Suppose cij is the smallest cost in row i and column j
of an assignment problem. Must xij � 1 in any optimal
assignment?

7.6 Transshipment Problems
A transportation problem allows only shipments that go directly from a supply point to a
demand point. In many situations, shipments are allowed between supply points or be-
tween demand points. Sometimes there may also be points (called transshipment points)
through which goods can be transshipped on their journey from a supply point to a de-
mand point. Shipping problems with any or all of these characteristics are transshipment
problems. Fortunately, the optimal solution to a transshipment problem can be found by
solving a transportation problem.

In what follows, we define a supply point to be a point that can send goods to another
point but cannot receive goods from any other point. Similarly, a demand point is a point
that can receive goods from other points but cannot send goods to any other point. A
transshipment point is a point that can both receive goods from other points and send
goods to other points. The following example illustrates these definitions (“—” indicates
that a shipment is impossible).

Widgetco manufactures widgets at two factories, one in Memphis and one in Denver. The
Memphis factory can produce as many as 150 widgets per day, and the Denver factory
can produce as many as 200 widgets per day. Widgets are shipped by air to customers in
Los Angeles and Boston. The customers in each city require 130 widgets per day. Because
of the deregulation of airfares, Widgetco believes that it may be cheaper to first fly some
widgets to New York or Chicago and then fly them to their final destinations. The costs
of flying a widget are shown in Table 58. Widgetco wants to minimize the total cost of
shipping the required widgets to its customers.

TA B L E  56

2

13

3

1 4

32

TA B L E  57

Bids

Route Route Route Route
Company 1 2 3 4

1 $4,000 $5,000 — —
2 — $4,000 — $4,000
3 $3,000 — $2,000 —
4 — — $4,000 $5,000

TransshipmentE X A M P L E  5



In this problem, Memphis and Denver are supply points, with supplies of 150 and 200
widgets per day, respectively. New York and Chicago are transshipment points. Los An-
geles and Boston are demand points, each with a demand of 130 widgets per day. A graph-
ical representation of possible shipments is given in Figure 9.

We now describe how the optimal solution to a transshipment problem can be found
by solving a transportation problem. Given a transshipment problem, we create a balanced
transportation problem by the following procedure (assume that total supply exceeds to-
tal demand):

Step 1 If necessary, add a dummy demand point (with a supply of 0 and a demand equal
to the problem’s excess supply) to balance the problem. Shipments to the dummy and from
a point to itself will, of course, have a zero shipping cost. Let s � total available supply.

Step 2 Construct a transportation tableau as follows: A row in the tableau will be needed
for each supply point and transshipment point, and a column will be needed for each de-
mand point and transshipment point. Each supply point will have a supply equal to its
original supply, and each demand point will have a demand equal to its original demand.
Let s � total available supply. Then each transshipment point will have a supply equal to
(point’s original supply) � s and a demand equal to (point’s original demand) � s. This
ensures that any transshipment point that is a net supplier will have a net outflow equal
to the point’s original supply, and, similarly, a net demander will have a net inflow equal
to the point’s original demand. Although we don’t know how much will be shipped
through each transshipment point, we can be sure that the total amount will not exceed s.
This explains why we add s to the supply and demand at each transshipment point. By
adding the same amounts to the supply and demand, we ensure that the net outflow at each
transshipment point will be correct, and we also maintain a balanced transportation
tableau.
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TA B L E  58
Shipping Costs for Transshipments

To ($)

From Memphis Denver N.Y. Chicago L.A. Boston

Memphis 0 — 8 13 25 28
Denver — 0 15 12 26 25
N.Y. — — 0 6 16 17
Chicago — — 6 0 14 16
L.A. — — — — 0 —
Boston — — — — — 0

Memphis New York
Los
Angeles

Denver Chicago Boston

F I G U R E  9
A Transshipment

Problem



For the Widgetco example, this procedure yields the transportation tableau and its opti-
mal solution given in Table 59. Because s � (total supply) � 150 � 200 � 350 and (total
demand) � 130 � 130 � 260, the dummy demand point has a demand of 350 � 260 �
90. The other supplies and demands in the transportation tableau are obtained by adding
s � 350 to each transshipment point’s supply and demand.

In interpreting the solution to the transportation problem created from a transshipment
problem, we simply ignore the shipments to the dummy and from a point to itself. From
Table 59, we find that Widgetco should produce 130 widgets at Memphis, ship them to
New York, and transship them from New York to Los Angeles. The 130 widgets produced
at Denver should be shipped directly to Boston. The net outflow from each city is

Memphis: 220 � 130 � 20 � 220 � 150

Denver: 220 � 130 � 70 � 220 � 200

N.Y.: 220 � 130 � 130 � 220 � 0

Chicago: 350 � 350 � 130 � 220 � 0

L.A.: 350 � 350 �130 � 220 � 0

Boston: 350 � 350 �130 � 220 � 0

Dummy: �20 � 70 � 130 � 220 � �90

A negative net outflow represents an inflow. Observe that each transshipment point (New
York and Chicago) has a net outflow of 0; whatever flows into the transshipment point
must leave the transshipment point. A graphical representation of the optimal solution to
the Widgetco example is given in Figure 10.

Suppose that we modify the Widgetco example and allow shipments between Mem-
phis and Denver. This would make Memphis and Denver transshipment points and would
add columns for Memphis and Denver to the Table 59 tableau. The Memphis row in the
tableau would now have a supply of 150 � 350 � 500, and the Denver row would have
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F I G U R E  10
Optimal Solution 
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0
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a supply of 200 � 350 � 550. The new Memphis column would have a demand of 0 �
350 � 350, and the new Denver column would have a demand of 0 � 350 � 350. Fi-
nally, suppose that shipments between demand points L.A. and Boston were allowed. This
would make L.A. and Boston transshipment points and add rows for L.A. and Boston.
The supply for both the L.A. and Boston rows would be 0 � 350 � 350. The demand for
both the L.A. and Boston columns would now be 130 � 350 � 480.

P R O B L E M S
Group A
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1 General Ford produces cars at L.A. and Detroit and has
a warehouse in Atlanta; the company supplies cars to
customers in Houston and Tampa. The cost of shipping a car
between points is given in Table 60 (“—” means that a
shipment is not allowed). L.A. can produce as many as
1,100 cars, and Detroit can produce as many as 2,900 cars.
Houston must receive 2,400 cars, and Tampa must receive
1,500 cars.

a Formulate a balanced transportation problem that
can be used to minimize the shipping costs incurred in
meeting demands at Houston and Tampa.
b Modify the answer to part (a) if shipments between
L.A. and Detroit are not allowed.
c Modify the answer to part (a) if shipments between
Houston and Tampa are allowed at a cost of $5.

2 Sunco Oil produces oil at two wells. Well 1 can produce
as many as 150,000 barrels per day, and well 2 can produce
as many as 200,000 barrels per day. It is possible to ship oil
directly from the wells to Sunco’s customers in Los Angeles
and New York. Alternatively, Sunco could transport oil to
the ports of Mobile and Galveston and then ship it by tanker
to New York or Los Angeles. Los Angeles requires 160,000
barrels per day, and New York requires 140,000 barrels per
day. The costs of shipping 1,000 barrels between two points
are shown in Table 61. Formulate a transshipment model
(and equivalent transportation model) that could be used to
minimize the transport costs in meeting the oil demands of
Los Angeles and New York.

3 In Problem 2, assume that before being shipped to Los
Angeles or New York, all oil produced at the wells must be
refined at either Galveston or Mobile. To refine 1,000 barrels
of oil costs $12 at Mobile and $10 at Galveston. Assuming
that both Mobile and Galveston have infinite refinery capacity,

formulate a transshipment and balanced transportation model
to minimize the daily cost of transporting and refining the oil
requirements of Los Angeles and New York.

4 Rework Problem 3 under the assumption that Galveston
has a refinery capacity of 150,000 barrels per day and Mobile
has one of 180,000 barrels per day. (Hint: Modify the method
used to determine the supply and demand at each
transshipment point to incorporate the refinery capacity
restrictions, but make sure to keep the problem balanced.)

5 General Ford has two plants, two warehouses, and three
customers. The locations of these are as follows:

Plants: Detroit and Atlanta
Warehouses: Denver and New York
Customers: Los Angeles, Chicago, and Philadelphia

Cars are produced at plants, then shipped to warehouses,
and finally shipped to customers. Detroit can produce 150
cars per week, and Atlanta can produce 100 cars per week.
Los Angeles requires 80 cars per week; Chicago, 70; and
Philadelphia, 60. It costs $10,000 to produce a car at each
plant, and the cost of shipping a car between two cities is
given in Table 62. Determine how to meet General Ford’s
weekly demands at minimum cost.

Group B

6† A company must meet the following demands for cash
at the beginning of each of the next six months: month 1,

TA B L E  60

To ($)

From L.A. Detroit Atlanta Houston Tampa

L.A. 0 140 100 90 225
Detroit 145 0 111 110 119
Atlanta 105 115 0 113 78
Houston 89 109 121 0 —
Tampa 210 117 82 — 0

TA B L E  61

To ($)

From Well 1 Well 2 Mobile Galveston N.Y. L.A.

Well 1 0 — 10 13 25 28
Well 2 — 0 15 12 26 25
Mobile — — 0 6 16 17
Galveston — — 6 0 14 16
N.Y. — — — — 0 15
L.A. — — — — 15 0

Note: Dashes indicate shipments that are not allowed.

†Based on Srinivasan (1974).



$200; month 2, $100; month 3, $50; month 4, $80; month
5, $160; month 6, $140. At the beginning of month 1, the
company has $150 in cash and $200 worth of bond 1, $100
worth of bond 2, and $400 worth of bond 3. The company
will have to sell some bonds to meet demands, but a penalty
will be charged for any bonds sold before the end of month
6. The penalties for selling $1 worth of each bond are as
shown in Table 63.

a Assuming that all bills must be paid on time, for-
mulate a balanced transportation problem that can be
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used to minimize the cost of meeting the cash demands
for the next six months.
b Assume that payment of bills can be made after they
are due, but a penalty of 5¢ per month is assessed for
each dollar of cash demands that is postponed for one
month. Assuming all bills must be paid by the end of
month 6, develop a transshipment model that can be
used to minimize the cost of paying the next six months’
bills. (Hint: Transshipment points are needed, in the
form Ct � cash available at beginning of month t after
bonds for month t have been sold, but before month t
demand is met. Shipments into Ct occur from bond sales
and Ct � 1. Shipments out of Ct occur to Ct � 1 and
demands for months 1, 2, . . . . t.)

S U M M A R Y Notation

m � number of supply points

n � number of demand points

xij � number of units shipped from supply point i to demand point j

cij � cost of shipping 1 unit from supply point i to demand point j

si � supply at supply point i

dj � demand at demand point j

cij � coefficient of xij in row 0 of a given tableau

aij � column for xij in transportation constraints

A transportation problem is balanced if total supply equals total demand. To use the
methods of this chapter to solve a transportation problem, the problem must first be bal-
anced by use of a dummy supply or a dummy demand point. A balanced transportation
problem may be written as

min �
i�m

i�1
�
j�n

j�1

cijxij

s.t. �
j�n

j�1

xij � si (i � 1, 2, . . . , m) (Supply constraints)

s.t. �
i�m

i�1

xij � dj ( j � 1, 2, . . . , n) (Demand constraints)

xij � 0 (i � 1, 2, . . . , m; j � 1, 2, . . . , n)

TA B L E  63

Month of Sale

Bond 1 2 3 4 5 6

1 $0.21 $0.19 $0.17 $0.13 $0.09 $0.05
2 $0.50 $0.50 $0.50 $0.33 $0.00 $0.00
3 $1.00 $1.00 $1.00 $1.00 $1.00 $0.00

TA B L E  62

To ($)

From Denver New York

Detroit 1,253 637
Atlanta 1,398 841

To ($)

From Los Angeles Chicago Philadelphia

Denver 1,059 996 1,691
New York 2,786 802 100



Finding Basic Feasible Solutions 
for Balanced Transportation Problems

We can find a bfs for a balanced transportation problem by the northwest corner method,
the minimum-cost method, or Vogel’s method. To find a bfs by the northwest corner
method, begin in the upper left-hand (or northwest) corner of the transportation tableau
and set x11 as large as possible. Clearly, x11 can be no larger than the smaller of s1 and
d1. If x11 � s1, then cross out the first row of the transportation tableau; this indicates that
no more basic variables will come from row 1 of the tableau. Also change d1 to d1 � s1.
If x11 � d1, then cross out the first column of the transportation tableau and change s1 to
s1 � d1. If x11 � s1 � d1, cross out either row 1 or column 1 (but not both) of the trans-
portation tableau. If you cross out row 1, change d1 to 0; if you cross out column 1, change
s1 to 0. Continue applying this procedure to the most northwest cell in the tableau that
does not lie in a crossed-out row or column. Eventually, you will come to a point where
there is only one cell that can be assigned a value. Assign this cell a value equal to its
row or column demand, and cross out both the cell’s row and its column. A basic feasi-
ble solution has now been obtained.

Finding the Optimal Solution 
for a Transportation Problem

Step 1 If the problem is unbalanced, balance it.

Step 2 Use one of the methods described in Section 7.2 to find a bfs.

Step 3 Use the fact that u1 � 0 and ui � vj � cij for all basic variables to find the 
[u1 u2 . . . um v1 v2 . . . vn] for the current bfs.

Step 4 If ui � vj � cij � 0 for all nonbasic variables, then the current bfs is optimal. If
this is not the case, then we enter the variable with the most positive ui � vj � cij into
the basis. To do this, find the loop. Then, counting only cells in the loop, label the even
cells. Also label the odd cells. Now find the odd cell whose variable assumes the small-
est value, 	. The variable corresponding to this odd cell will leave the basis. To perform
the pivot, decrease the value of each odd cell by 	 and increase the value of each even
cell by 	. The values of variables not in the loop remain unchanged. The pivot is now
complete. If 	 � 0, then the entering variable will equal 0, and an odd variable that has
a current value of 0 will leave the basis. In this case, a degenerate bfs will result. If more
than one odd cell in the loop equals 	, you may arbitrarily choose one of these odd cells
to leave the basis; again, a degenerate bfs will result. The pivoting yields a new bfs.

Step 5 Using the new bfs, return to steps 3 and 4.

For a maximization problem, proceed as stated, but replace step 4 by step 4
.

Step 4
 If ui � vj � cij � 0 for all nonbasic variables, the current bfs is optimal. Other-
wise, enter the variable with the most negative ui � vj � cij into the basis using the piv-
oting procedure.

Assignment Problems

An assignment problem is a balanced transportation problem in which all supplies and
demands equal 1. An m � m assignment problem may be efficiently solved by the Hun-
garian method:
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Step 1 Find the minimum element in each row of the cost matrix. Construct a new ma-
trix by subtracting from each cost the minimum cost in its row. For this new matrix, find
the minimum cost in each column. Construct a new matrix (reduced cost matrix) by sub-
tracting from each cost the minimum cost in its column.

Step 2 Cover all the zeros in the reduced cost matrix using the minimum number of lines
needed. If m lines are required, then an optimal solution is available among the covered
zeros in the matrix. If fewer than m lines are needed, then proceed to step 3.

Step 3 Find the smallest nonzero element (k) in the reduced cost matrix that is uncov-
ered by the lines drawn in step 2. Now subtract k from each uncovered element and add
k to each element that is covered by two lines. Return to step 2.

R E M A R K S 1 To solve an assignment problem in which the goal is to maximize the objective function, mul-
tiply the profits matrix through by �1 and solve it as a minimization problem.
2 If the number of rows and columns in the cost matrix are unequal, then the problem is unbal-
anced. The Hungarian method may yield an incorrect solution if the problem is unbalanced. Thus,
any assignment problem should be balanced (by the addition of one or more dummy points) before
it is solved by the Hungarian method.

Transshipment Problems

A transshipment problem allows shipment between supply points and between demand
points, and it may also contain transshipment points through which goods may be shipped
on their way from a supply point to a demand point. Using the following method, a trans-
shipment problem may be transformed into a balanced transportation problem.

Step 1 If necessary, add a dummy demand point (with a supply of 0 and a demand equal
to the problem’s excess supply) to balance the problem. Shipments to the dummy and from
a point to itself will, of course, have a zero shipping cost. Let s � total available supply.

Step 2 Construct a transportation tableau creating a row for each supply point and trans-
shipment point, and a column for each demand point and transshipment point. Each sup-
ply point will have a supply equal to its original supply, and each demand point will have
a demand equal to its original demand. Let s � total available supply. Then each trans-
shipment point will have a supply equal to (point’s original supply) � s and a demand
equal to (point’s original demand) � s.

Sensitivity Analysis for Transportation Problems

Following the discussion of sensitivity analysis in Chapter 6, we can analyze how a
change in a transportation problem affects the problem’s optimal solution.

Change 1 Changing the objective function coefficient of a nonbasic variable. As long as
the coefficient of xij in the optimal row 0 is nonpositive, the current basis remains optimal.

Change 2 Changing the objective function coefficient of a basic variable. To see whether
the current basis remains optimal, find the new ui’s and vj’s and use these values to price
out all nonbasic variables. The current basis remains optimal as long as all nonbasic vari-
ables have a nonpositive coefficient in row 0.

Change 3 Increasing both supply si and demand dj by �.

New z-value � old z-value � �ui � �vj
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We may find the new values of the decision variables as follows:

1 If xij is a basic variable in the optimal solution, then increase xij by �.

2 If xij is a nonbasic variable in the optimal solution, find the loop involving xij and some
of the basic variables. Find an odd cell in the loop that is in row i. Increase the value of
this odd cell by � and go around the loop, alternately increasing and then decreasing cur-
rent basic variables in the loop by �.

R E V I E W  P R O B L E M S
Group A
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1 Televco produces TV picture tubes at three plants. Plant
1 can produce 50 tubes per week; plant 2, 100 tubes per
week; and plant 3, 50 tubes per week. Tubes are shipped to
three customers. The profit earned per tube depends on the
site where the tube was produced and on the customer who
purchases the tube (see Table 64). Customer 1 is willing to
purchase as many as 80 tubes per week; customer 2, as
many as 90; and customer 3, as many as 100. Televco wants
to find a shipping and production plan that will maximize
profits.

a Formulate a balanced transportation problem that
can be used to maximize Televco’s profits.
b Use the northwest corner method to find a bfs to the
problem.
c Use the transportation simplex to find an optimal so-
lution to the problem.

2 Five workers are available to perform four jobs. The
time it takes each worker to perform each job is given in
Table 65. The goal is to assign workers to jobs so as to
minimize the total time required to perform the four jobs.
Use the Hungarian method to solve the problem.

3 A company must meet the following demands for 
a product: January, 30 units; February, 30 units; March, 
20 units. Demand may be backlogged at a cost of
$5/unit/month. All demand must be met by the end of March.
Thus, if 1 unit of January demand is met during March, a
backlogging cost of 5(2) � $10 is incurred. Monthly
production capacity and unit production cost during each
month are given in Table 66. A holding cost of $20/unit is
assessed on the inventory at the end of each month.

a Formulate a balanced transportation problem that
could be used to determine how to minimize the total
cost (including backlogging, holding, and production
costs) of meeting demand.
b Use Vogel’s method to find a basic feasible solution.
c Use the transportation simplex to determine how to
meet each month’s demand. Make sure to give an inter-
pretation of your optimal solution (for example, 20 units
of month 2 demand is met from month 1 production).

4 Appletree Cleaning has five maids. To complete cleaning
my house, they must vacuum, clean the kitchen, clean the
bathroom, and do general straightening up. The time it takes
each maid to do each job is shown in Table 67. Each maid

TA B L E  64

To ($)

From Customer 1 Customer 2 Customer 3

Plant 1 75 60 69
Plant 2 79 73 68
Plant 3 85 76 70

TA B L E  65

Time (Hours)

Worker Job 1 Job 2 Job 3 Job 4

1 10 15 10 15
2 12 8 20 16
3 12 9 12 18
4 6 12 15 18
5 16 12 8 12

TA B L E  66

Production Unit Production
Month Capacity Cost

January 35 $400
February 30 $420
March 35 $410

TA B L E  67

Time (Hours)

Clean Clean Straighten
Maid Vacuum Kitchen Bathroom Up

1 6 5 2 1
2 9 8 7 3
3 8 5 9 4
4 7 7 8 3
5 5 5 6 4



is assigned one job. Use the Hungarian method to determine
assignments that minimize the total number of maid-hours
needed to clean my house.

5† Currently, State University can store 200 files on hard
disk, 100 files in computer memory, and 300 files on tape.
Users want to store 300 word-processing files, 100
packaged-program files, and 100 data files. Each month a
typical word-processing file is accessed eight times; a typical
packaged-program file, four times; and a typical data file,
two times. When a file is accessed, the time it takes for the
file to be retrieved depends on the type of file and on the
storage medium (see Table 68).

a If the goal is to minimize the total time per month
that users spend accessing their files, formulate a bal-
anced transportation problem that can be used to deter-
mine where files should be stored.
b Use the minimum cost method to find a bfs.
c Use the transportation simplex to find an optimal 
solution.

6 The Gotham City police have just received three calls for
police. Five cars are available. The distance (in city blocks)
of each car from each call is given in Table 69. Gotham City
wants to minimize the total distance cars must travel to
respond to the three police calls. Use the Hungarian method
to determine which car should respond to which call.

7 There are three school districts in the town of Busville.
The number of black and white students in each district are
shown in Table 70. The Supreme Court requires the schools
in Busville to be racially balanced. Thus, each school must
have exactly 300 students, and each school must have the
same number of black students. The distances between
districts are shown in Table 70.
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Formulate a balanced transportation problem that can be
used to determine the minimum total distance that students
must be bused while still satisfying the Supreme Court’s
requirements. Assume that a student who remains in his or
her own district will not be bused.

8 Using the northwest corner method to find a bfs, find
(via the transportation simplex) an optimal solution to the
transportation (minimization) problem shown in Table 71.

9 Solve the following LP:
min z � 2x1 � 3x2 � 4x3 � 3x4

s.t. x1 � x2 � x3 � x4 � 4
s.t. x1 � x2 � x3 � x4 � 5
s.t. x1 � x2 � x3 � x4 � 3
s.t. x1 � x2 � x3 � x4 � 6
min xj � 0 ( j � 1, 2, 3, 4)

10 Find the optimal solution to the balanced transportation
problem in Table 72 (minimization).

11 In Problem 10, suppose we increase si to 16 and d3 to
11. The problem is still balanced, and because 31 units
(instead of 30 units) must be shipped, one would think that
the total shipping costs would be increased. Show that the
total shipping cost has actually decreased by $2, however.
This is called the “more for less” paradox. Explain why
increasing both the supply and the demand has decreased
cost. Using the theory of shadow prices, explain how one
could have predicted that increasing s1 and d3 by 1 would
decrease total cost by $2.

12 Use the northwest corner method, the minimum-cost
method, and Vogel’s method to find basic feasible solutions
to the transportation problem in Table 73.

13 Find the optimal solution to Problem 12.

†This problem is based on Evans (1984).

TA B L E  68

Time (Minutes)

Storage Word Packaged
Medium Processing Program Data

Hard disk 5 4 4
Memory 2 1 1
Tape 10 8 6

TA B L E  69

Distance (Blocks)

Car Call 1 Call 2 Call 3

1 10 11 18
2 6 7 7
3 7 8 5
4 5 6 4
5 9 4 7

TA B L E  71

40

60

40

70 10

50

16

19

18

14

13

15

12

14

17

TA B L E  70

No. of Students Distance to (Miles)

District Whites Blacks District 2 District 3

1 210 120 3 5
2 210 30 — 4
3 180 150 — —



14 Oilco has oil fields in San Diego and Los Angeles. The
San Diego field can produce 500,000 barrels per day, and
the Los Angeles field can produce 400,000 barrels per day.
Oil is sent from the fields to a refinery, either in Dallas or
in Houston (assume that each refinery has unlimited
capacity). It costs $700 to refine 100,000 barrels of oil at
Dallas and $900 at Houston. Refined oil is shipped to
customers in Chicago and New York. Chicago customers
require 400,000 barrels per day of refined oil; New York
customers require 300,000. The costs of shipping 100,000
barrels of oil (refined or unrefined) between cities are given
in Table 74. Formulate a balanced transportation model of
this situation.

15 For the Powerco problem, find the range of values of
c24 for which the current basis remains optimal.

16 For the Powerco problem, find the range of values of
c23 for which the current basis remains optimal.

17 A company produces cars in Atlanta, Boston, Chicago,
and Los Angeles. The cars are then shipped to warehouses
in Memphis, Milwaukee, New York City, Denver, and San
Francisco. The number of cars available at each plant is
given in Table 75.

Each warehouse needs to have available the number of
cars given in Table 76.

The distance (in miles) between the cities is given in
Table 77.

a Assuming that the cost (in dollars) of shipping a car
equals the distance between two cities, determine an op-
timal shipping schedule.
b Assuming that the cost (in dollars) of shipping a car
equals the square root of the distance between two cities,
determine an optimal shipping schedule.
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18 During the next three quarters, Airco faces the following
demands for air conditioner compressors: quarter 1—200;
quarter 2—300; quarter 3—100. As many as 240 air
compressors can be produced during each quarter. Production
costs/compressor during each quarter are given in Table 78.
The cost of holding an air compressor in inventory is
$100/quarter. Demand may be backlogged (as long as it is met
by the end of quarter 3) at a cost of $60/compressor/quarter.
Formulate the tableau for a balanced transportation problem
whose solution tells Airco how to minimize the total cost of
meeting the demands for quarters 1–3.

19 A company is considering hiring people for four types
of jobs. It would like to hire the number of people in Table
79 for each type of job.

Four types of people can be hired by the company. Each
type is qualified to perform two types of jobs according to

TA B L E  72

10

15

10 10

15

4

4

2

8

4

12

TA B L E  73

3

5

15

12 12

10

6

2

1

3

10

4

11

9

7

3

20

5

18

TA B L E  74

To ($)

From Dallas Houston N.Y. Chicago

L.A. 300 110 — —
San Diego 420 100 — —
Dallas — — 450 550
Houston — — 470 530

TA B L E  75

Plant Cars Available

Atlanta 5,000
Boston 6,000
Chicago 4,000
L.A. 3,000

TA B L E  76

Warehouse Cars Required

Memphis 6,000
Milwaukee 4,000
N.Y. 4,000
Denver 2,000
San Francisco 2,000

TA B L E  77

Memphis Milwaukee N.Y. Denver S.F.

Atlanta 371 761 841 1,398 2,496
Boston 1,296 1,050 206 1,949 3,095
Chicago 530 87 802 996 2,142
L.A. 1,817 2,012 2,786 1,059 379



Table 80. A total of 20 Type 1, 30 Type 2, 40 Type 3, and
20 Type 4 people have applied for jobs. Formulate a balanced
transportation problem whose solution will tell the company
how to maximize the number of employees assigned to
suitable jobs. (Note: Each person can be assigned to at most
one job.)

20 During each of the next two months you can produce
as many as 50 units/month of a product at a cost of $12/unit
during month 1 and $15/unit during month 2. The customer
is willing to buy as many as 60 units/month during each of
the next two months. The customer will pay $20/unit during
month 1, and $16/unit during month 2. It costs $1/unit to
hold a unit in inventory for a month. Formulate a balanced
transportation problem whose solution will tell you how to
maximize profit.

Group B

21† The Carter Caterer Company must have the following
number of clean napkins available at the beginning of each
of the next four days: day 1—15; day 2—12; day 3—18;
day 4—6. After being used, a napkin can be cleaned by one
of two methods: fast service or slow service. Fast service
costs 10¢ per napkin, and a napkin cleaned via fast service
is available for use the day after it is last used. Slow service
costs 6¢ per napkin, and these napkins can be reused two
days after they are last used. New napkins can be purchased
for a cost of 20¢ per napkin. Formulate a balanced
transportation problem to minimize the cost of meeting the
demand for napkins during the next four days.

22 Braneast Airlines must staff the daily flights between
New York and Chicago shown in Table 81. Each of Braneast’s
crews lives in either New York or Chicago. Each day a crew
must fly one New York–Chicago and one Chicago–New
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York flight with at least 1 hour of downtime between flights.
Braneast wants to schedule the crews to minimize the total
downtime. Set up an assignment problem that can be used
to accomplish this goal. (Hint: Let xij � 1 if the crew that
flies flight i also flies flight j, and xij � 0 otherwise. If xij �
1, then a cost cij is incurred, corresponding to the downtime
associated with a crew flying flight i and flight j.) Of course,
some assignments are not possible. Find the flight
assignments that minimize the total downtime. How many
crews should be based in each city? Assume that at the end
of the day, each crew must be in its home city.

23 A firm producing a single product has three plants and
four customers. The three plants will produce 3,000, 5,000,
and 5,000 units, respectively, during the next time period.
The firm has made a commitment to sell 4,000 units to
customer 1, 3,000 units to customer 2, and at least 3,000
units to customer 3. Both customers 3 and 4 also want to
buy as many of the remaining units as possible. The profit
associated with shipping a unit from plant i to customer j is
given in Table 82. Formulate a balanced transportation
problem that can be used to maximize the company’s profit.

24 A company can produce as many as 35 units/month.
The demands of its primary customers must be met on time
each month; if it wishes, the company may also sell units to
secondary customers each month. A $1/unit holding cost is
assessed against each month’s ending inventory. The relevant
data are shown in Table 83. Formulate a balanced
transportation problem that can be used to maximize profits
earned during the next three months.

25 My home has four valuable paintings that are up for
sale. Four customers are bidding for the paintings. Customer
1 is willing to buy two paintings, but each other customer
is willing to purchase at most one painting. The prices that
each customer is willing to pay are given in Table 84. Use

TA B L E  78

Quarter 1 Quarter 2 Quarter 3

$200 $180 $240

TA B L E  79

Job

1 2 3 4

Number of people 30 30 40 20

TA B L E  80

Type of Person

1 2 3 4

Jobs qualified for 1 and 3 2 and 3 3 and 4 1 and 4

†This problem is based on Jacobs (1954).

TA B L E  81

Leave Arrive Leave Arrive
Flight Chicago New York Flight New York Chicago

1 6 A.M. 10 A.M. 1 7 A.M. 9 A.M.
2 9 A.M. 1 P.M. 2 8 A.M. 10 A.M.
3 12 noon 4 P.M. 3 10 A.M. 12 noon
4 3 P.M. 7 P.M. 4 12 noon 2 P.M.
5 5 P.M. 9 P.M. 5 2 P.M. 4 P.M.
6 7 P.M. 11 P.M. 6 4 P.M. 6 P.M.
7 8 P.M. 12 midnight 7 6 P.M. 8 P.M.

TA B L E  82

To Customer ($)

From 1 2 3 4

Plant 1 65 63 62 64
Plant 2 68 67 65 62
Plant 3 63 60 59 60



the Hungarian method to determine how to maximize the
total revenue received from the sale of the paintings.

26 Powerhouse produces capacitors at three locations: Los
Angeles, Chicago, and New York. Capacitors are shipped
from these locations to public utilities in five regions of the
country: northeast (NE), northwest (NW), midwest (MW),
southeast (SE), and southwest (SW). The cost of producing
and shipping a capacitor from each plant to each region of
the country is given in Table 85. Each plant has an annual
production capacity of 100,000 capacitors. Each year, each
region of the country must receive the following number of
capacitors: NE, 55,000; NW, 50,000; MW, 60,000; SE,
60,000; SW, 45,000. Powerhouse feels shipping costs are
too high, and the company is therefore considering building
one or two more production plants. Possible sites are Atlanta
and Houston. The costs of producing a capacitor and
shipping it to each region of the country are given in Table
86. It costs $3 million (in current dollars) to build a new
plant, and operating each plant incurs a fixed cost (in
addition to variable shipping and production costs) of
$50,000 per year. A plant at Atlanta or Houston will have
the capacity to produce 100,000 capacitors per year.

Assume that future demand patterns and production costs
will remain unchanged. If costs are discounted at a rate of
11�

1
9

�% per year, how can Powerhouse minimize the present
value of all costs associated with meeting current and future
demands?
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27† During the month of July, Pittsburgh resident B. Fly
must make four round-trip flights between Pittsburgh and
Chicago. The dates of the trips are as shown in Table 87. 
B. Fly must purchase four round-trip tickets. Without a
discounted fare, a round-trip ticket between Pittsburgh and
Chicago costs $500. If Fly’s stay in a city includes a weekend,
then he gets a 20% discount on the round-trip fare. If his
stay in a city is at least 21 days, then he receives a 35%
discount; and if his stay is more than 10 days, then he
receives a 30% discount. Of course, only one discount can
be applied toward the purchase of any ticket. Formulate and
solve an assignment problem that minimizes the total cost
of purchasing the four round-trip tickets. (Hint: Let xij � 1
if a round-trip ticket is purchased for use on the ith flight
out of Pittsburgh and the jth flight out of Chicago. Also
think about where Fly should buy a ticket if, for example,
x21 � 1.)

28 Three professors must be assigned to teach six sections
of finance. Each professor must teach two sections of
finance, and each has ranked the six time periods during
which finance is taught, as shown in Table 88. A ranking of
10 means that the professor wants to teach that time, and a
ranking of 1 means that he or she does not want to teach at
that time. Determine an assignment of professors to sections
that will maximize the total satisfaction of the professors.

29‡ Three fires have just broken out in New York. Fires 1
and 2 each require two fire engines, and fire 3 requires three
fire engines. The “cost” of responding to each fire depends
on the time at which the fire engines arrive. Let tij be the
time (in minutes) when the jth engine arrives at fire i. Then
the cost of responding to each fire is as follows:

Fire 1: 6t11 � 4t12 � 5t33

Fire 2: 7t21 � 3t22 � 5t33

Fire 3: 9t31 � 8t32 � 5t33

Three fire companies can respond to the three fires.
Company 1 has three engines available, and companies 2

TA B L E  83

Available for
Production Primary Secondary Sales

Month Cost/Unit ($) Demand Demand Price/Unit ($)

1 13 20 15 15
2 12 15 20 14
3 13 25 15 16

TA B L E  84

Bid for ($)

Customer Painting 1 Painting 2 Painting 3 Painting 4

1 8 11 — —
2 9 13 12 7
3 9 — 11 —
4 — — 12 9

TA B L E  85

To ($)

From NE NW MW SE SW

L.A. 27.86 4.00 20.54 21.52 13.87
Chicago 8.02 20.54 2.00 6.74 10.67
N.Y. 2.00 27.86 8.02 8.41 15.20

TA B L E  86

To ($)

From NE NW MW SE SW

Atlanta 8.41 21.52 6.74 3.00 7.89
Houston 15.20 13.87 10.67 7.89 3.00

†Based on Hansen and Wendell (1982).
‡Based on Denardo, Rothblum, and Swersey (1988).

TA B L E  87

Leave Pittsburgh Leave Chicago

Monday, July 1 Friday, July 5
Tuesday, July 9 Thursday, July 11
Monday, July 15 Friday, July 19
Wednesday, July 24 Thursday, July 25



and 3 each have two engines available. The time (in minutes)
it takes an engine to travel from each company to each fire
is shown in Table 89.

a Formulate and solve a transportation problem that
can be used to minimize the cost associated with as-
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signing the fire engines. (Hint: Seven demand points
will be needed.)
b Would the formulation in part (a) still be valid if the
cost of fire 1 were 4t11 � 6t12?

TA B L E  88

Professor 9 A.M. 10 A.M. 11 A.M. 1 P.M. 2 P.M. 3 P.M.

1 8 7 6 5 7 6
2 9 9 8 8 4 4
3 7 6 9 6 9 9

TA B L E  89

Company Fire 1 Fire 2 Fire 3

1 6 7 9
2 5 8 11
3 6 9 10
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