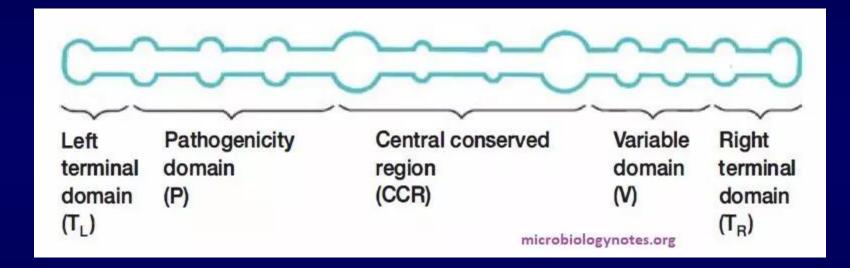


Viroids and Virusoids MSc Microbiology

Dr Shilpa Kaistha Department of Biotechnology School of Life Sciences & Biotechnology CSJMU Kanpur

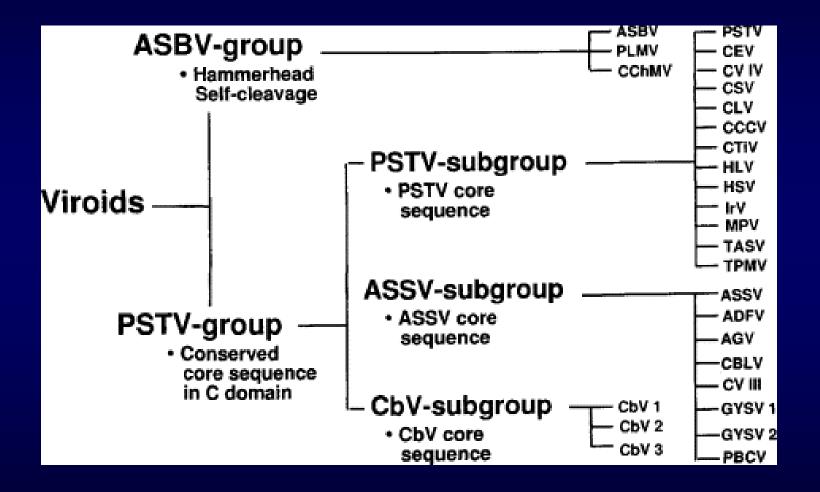
Viroids


- 1971. Ted Deiner- Potato Spindle Tuber Viroid (PSTVd)
- Very small, covalently closed, circular RNA molecules capable of autonomous replication and induction of disease
- Sizes range from 250-450 nucleotides
- High GC content, low MW
- Circularized with secondary structures
- No coding capacity do not program their own polymerase
- Use host-encoded polymerase for replication
- Mechanically transmitted; often seed transmitted
- More than 40 viroid species and many variants have been characterized
- "Classical" viroids have been found only in plants
- Some code for ribozymes

Structure

https://www.sciencedirect.com/topics/neuroscience/viroids

Viroid


https://www.sciencedirect.com/topics/neuroscience/viroids

Classification

2 Groups

- Pospiviroidae (type species PSTVd)
 - Potato Spindle Tuber Viroid
 - Replicate in nucleus-host RNA pol II
 - Rod like structures
 - Asymmetric rolling circle model
- Avsunviroidae (type species ASBVd)
 - Avacado Sun Blotch Viroid
 - Replicate in chloroplast
 - Diverse
 - Branched structures
 - Symmetric Rolling Circle Model
 - Hammerhead self cleavage ribozyme

Classification

https://www.sciencedirect.com/topics/neuroscience/viroids

Viroids are divided into two groups, based on site and details of replication

Compilation of viroids

RNA species	Abbreviation	Number of sequences	RNA species	Abbreviation	Number of sequences
Viroids					
ASBVd-type (group A)					
Avocado sunblotch viroid	ASBVd	19	PSTVd-type (group B)		
Peach latent mosaic viroid	PLMVd	6	ASSVd group (subgroup B2)		
PSTVd-type (group B)			Australian grapevine viroid	AGVd	1
PSTVd group (subgroup B1)			Apple dimple fruit viroid	ADFVd	1
Coconut cadang-cadang viroid	CCCVd	7	Apple scar skin viroid	ASSVd	4
Citrus exocortis viroid	CEVd	33	Citrus bent leaf viroid	CBLVd	3
Columnea latent viroid	CLVd	3	Citrus viroid species III	Cvd-III	2
Chrysanthemum stunt viroid	CSVd	4	Coleus blumei viroid I	CoVd	9
Coconut tinangaja viroid	CTiVd	2	Grapevine yellow speckle viroid	GYSVd	34
Citrus viroid species	CVdIV	2	Grapevine 1B viroid	G1BVd	1
Hop latent viroid	HLVd	1	Pear blister canker viroid	PBCVd	1
Hop stunt viroid	HSVd	32			
Iresine viroid	IRVd				
Mexican papita viroid	MPVd	1 9	1		
Potato spindle tuber viroid	PSTVd	9 29			
Tomato apical stunt viroid	TASVd	3			
Tomato planta macho viroid	TPMVd	3			
Tomato planta macho vilolo	IFINIVO	1			

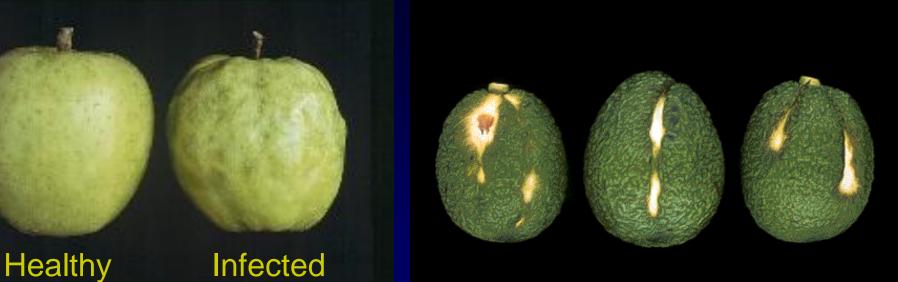
https://www.sciencedirect.com/topics/neuroscience/viroids

Viroid Diseases

PSTVd in potato

- Potato spindle tuber viroid (PSTVd)
 - May be limiting to potato growers
 - First viroid characterized
 - Many variants described
 - Control with detection in mother stock, clean seed

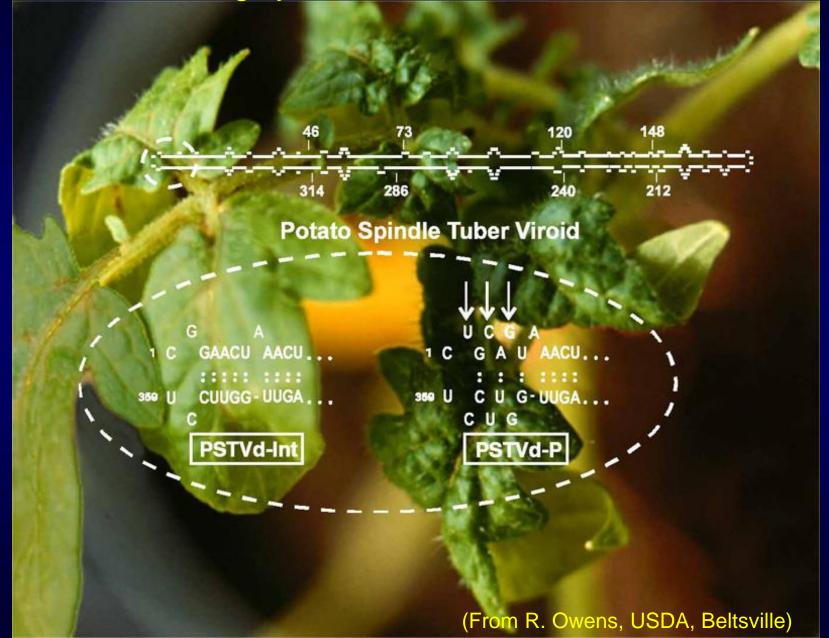
Viroids can cause severely misshaped potatoes. Left: healthy potatoes, middle and right: potatoes of infected plants. PHOTOS COURTESY WUR July 26, 2010, Wageningen, the Netherlands – The dangerous potato spindle tuber


https://www.greenhousecanada.com/wurhow-dangerous-viroids-in-plants-arespread-2348/

Viroid Diseases

- *Citrus exocortis viroid* (CEVd)
 - Causes stunting of plants, shelling of bark
 - May result in little yield loss
 - May be useful to promote dwarfing for agronomic advantage
 - Transmitted though stock, graft
 - Control by removal of infected plants, detection, clean stock

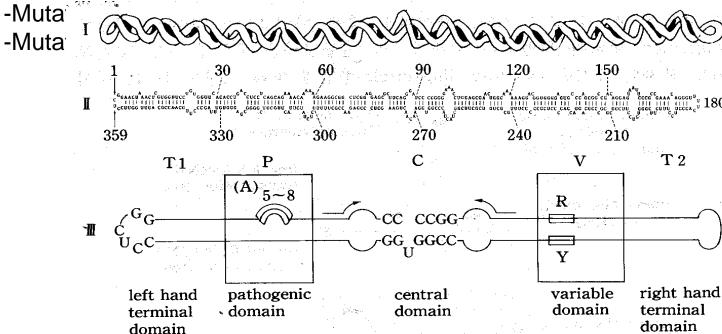
Citrus exocortis viroid


Apple crinkle fruit viroid

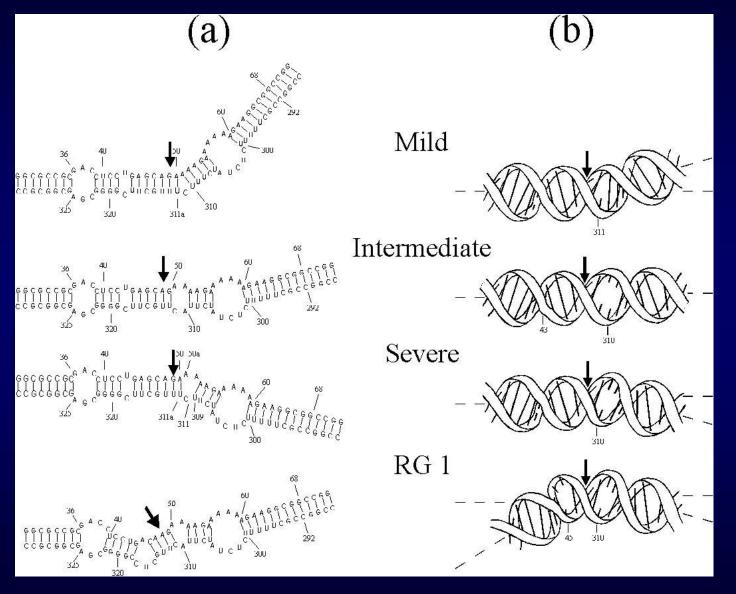
Avocado sun blotch viroid

Citrus exocortis viroid

Potato spindle tuber viroid (PSTVd) is the most thoroughly characterized viroid disease

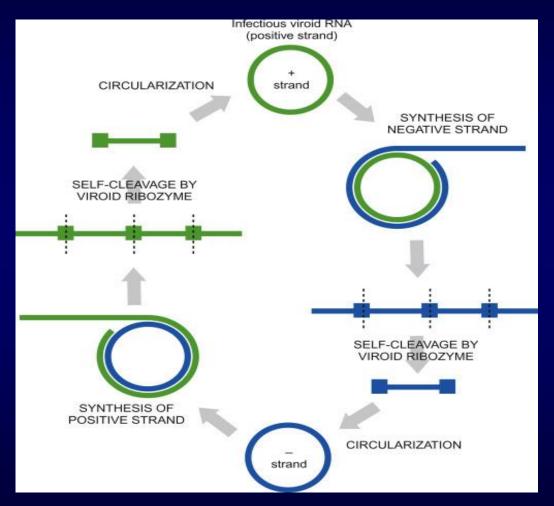

Viroid structures

-All are covalently closed circular RNAs fold to tightly basepaired structures


-Two main groups of viroids: <u>self-cleaving</u> and <u>non-self-cleaving</u> -Non-self cleaving viroids replicate in nucleus and fold into "dog bone" or rod-like structure

-Five domains identifiable in non-self-cleaving

-Left hand (LH) and right hand (RH) domains are non-base-paired loops -Single mutations to pathogenic domain often alter virulence



Minor variations in viroid sequence, and presumably attendant RNA structure changes, are associated with virulence differences

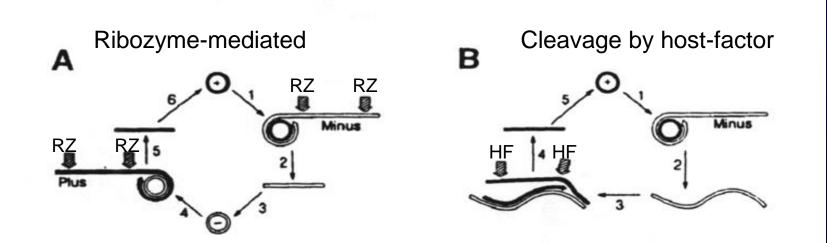
(From R. Owens, USDA, Beltsville)

Viroid Replication-rolling circle model

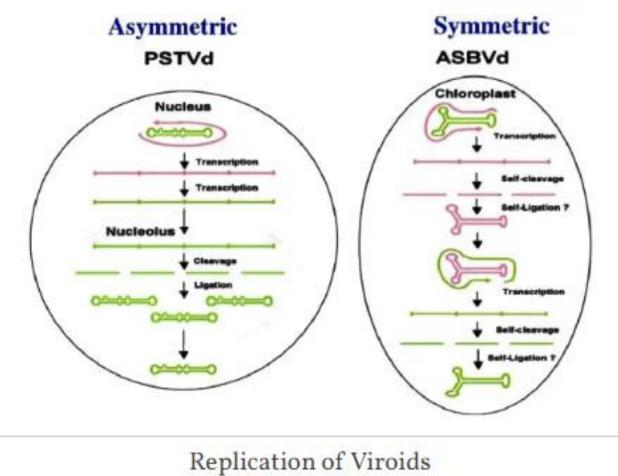
Venkataraman, Srividhya & Badar, Uzma & Shoeb, Erum & Hashim, Ghyda & Abouhaidar, Mounir & Hefferon, Kathleen. (2021). An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. International Journal of Molecular Sciences. 22. 2795. 10.3390/ijms22062795.

Rolling Circle Model

The viroids own ribozyme activity is used for self-cleavage of the multimeric RNA generated during replication. Host enzymes provide all other functions.


First, host RNA <u>polymerase</u> copies the circular plus strand to form a multimeric minus strand. Site-specific cleavage of this strand by the viroid ribozyme gives monomers that are circularized by a host RNA <u>ligase</u>.

The minus-stranded circles are the templates for a second round of rolling circle replication by RNA polymerase. The resulting multimeric plus strand undergoes ribozyme cleavage to create monomers.


These are circularized to produce the progeny viroids (circular, positive single-stranded RNA).

Viroid replication

- In nucleus or chloroplasts, depending on class of viroid
- Chloroplast-associated viroids process into monomers by ribozyme-mediated cleavage
- Nucleus-associated viroids process into monomers by using host-derived enzyme
- In both classes, host DNA-dependent RNA polymerase is the performs RNA polymerization on + and – strand RNA templates

Viroid Replication

https://www.biotechfront.com/2021/06/viroidscharacteristics-structure-types.html

Viroid movement

- Traffic within cell through nuclear pores using VirP1, a nuclear localization protein that binds viroid RNA
- Traffic cell-to-cell through plasmodesmata
- Traffic long distance through phloem
- All of these processes are associated with host proteins

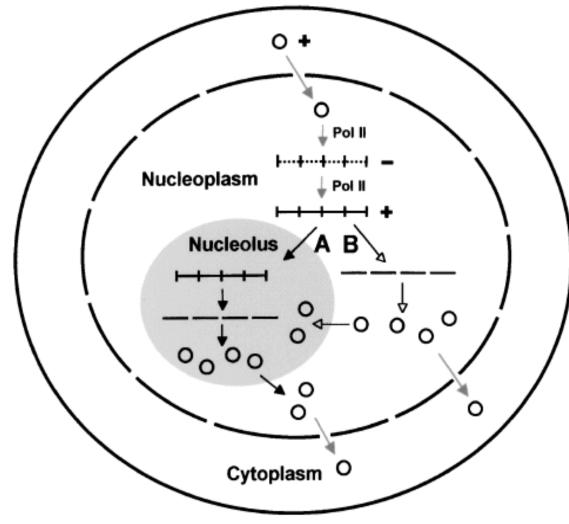
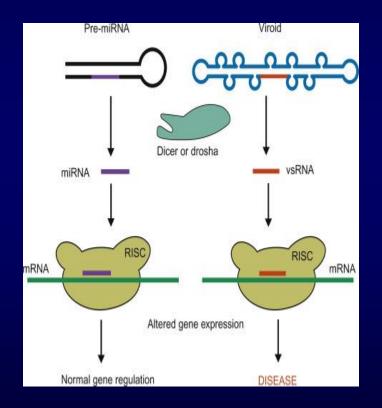



Figure 5. Model of PSTVd Replication Featuring Intranuclear Trafficking of the (+)-Strand PSTVd.

Cause for Disease- trigger RNAi

Viroid and/or its replicative intermediates trigger RNA interference. This results in the production of short singlestranded RNA molecules (known as vsRNA—viroid short RNA) of the same size as the microRNAs widely used by plant cells to regulate genes. This decreases expression of multiple plant genes, hence causing disease.

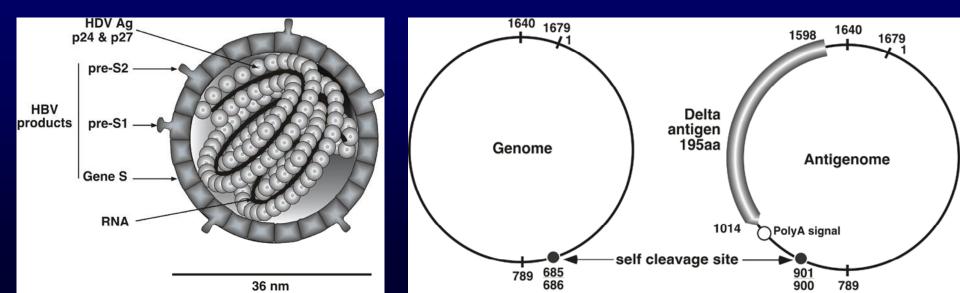
https://www.sciencedirect.com/topics/neuroscience/viroi

Virus associated Satellite RNA

Small, viroid-like	Satellite RNA	Small, linear Satellite RN	A Viroid
Viroid-like staRNA		HV CP Sat RNA HV RNA	→ ^{Viroid} RNA
	Viroid-like satRNA	Linear satRNA	Viroid
Host	Plants	Plants	Plants
Helper Virus	eg.SNMV	eg.CMV	None
Genome	ssRNA	ssRNA	ssRNA
Replication	HV replicase	HV replicase	Cellular polymerase
Site of replication	Cytoplasm	Nucleus/cytopla sm	Nucleus
Coding capacity	None	None	None
Encapsidation	HV CP	HV CP	None

HV, <u>helper virus</u>; SNMV, <u>Solanum</u> nodiflorum mottle virus; CMV, <u>Cucumber mosaic virus</u>; ssRNA, <u>single-stranded</u> <u>RNA</u>; CP, <u>capsid protein</u>. Rao etal, 2015 Virology 479:627

Virusoids


- 1981. W Randles described virusoids
- Formerly called Satellite viruses
- circular single-stranded RNA dependent on viruses for replication and encapsidation.
- 200-338 nt
- The genome of virusoids consist of several hundred nucleotides and does not code for any proteins. Some ORF have been identified

Virusoids

- Encapsidated by protein coat of host virus
- Replication: Host cytoplasm
- Barley yellow dwarf virus satellite RNA is another viruoid, and its helper virus is Luleovirus
- Tobacco ringspot virus satellite RNA and its helper virus Nepovirus

Hepatitis delta

- Hepatitis delta virus has many viroid-like properties, but the RNA is larger (1.7 kb), is encapsidated, and encodes a virion-associated protein (hepatitis delta antigen)
- Intensifies HBV infection
- HDV requires HBV as helper virus for encapsidation, so it has satellite-like properties (like a "virusoid")
- Replicates in nucleus via cellular DNA-dependent RNA polymerase II

- Rice yellow mottle virus small circular satellite RNA (scRYMV)- model for molecular biology studies
- <u>Bamboo mosaic virus satellite</u> <u>RNA</u> (satBaMV),^[32] which possesses an open reading frame that encodes a 20-kDa P20 protein. It was observed that when this nonessential ORF region was replaced with a foreign gene, expression of the foreign gene was enhanced or overexpressed
- Delivery for RNAi/ gene expression studies/ cargo carrier