

Architectural Design Architectural design is a creative process here

you design a system organization that will satisfy the functional and

non-functional requirements of a system. Because it is a creative

process, the activities within the process depend on the type of

system being developed, the background and experience of the

system architect, and the specific requirements for the system

IEEE defines architectural design as “the process of defining a

collection of hardware and software components and their

interfaces to establish the framework for the development of a

computer system.” The software that is built for computer-based

systems can exhibit one of these many architectural styles.

Each style will describe a system category that consists of :

 A set of components (eg: a database, computational modules)

that will perform a function required by the system.

 The set of connectors will help in coordination, communication,

and cooperation between the components.

 Conditions that how components can be integrated to form the

system.

 Semantic models that help the designer to understand the

overall properties of the system.

Because of the close relationship between non-functional

requirements and software architecture, the particular architectural

style and structure that you choose for a system should depend on

the non-functional system requirements:

1. Performance If performance is a critical requirement, the

architecture should be designed to localize critical operations within

a small number of components, with these components all deployed

on the same computer rather than distributed across the network.

This may mean using a few relatively large components rather than

small, fine-grain components, which reduces the number of

component communications. You may also consider run-time system

organizations that allow the system to be replicated and executed on

different processors.

 2. Security If security is a critical requirement, a layered structure for

the architecture should be used, with the most critical assets

protected in the innermost layers, with a high level of security

validation applied to these layers.

3. Safety If safety is a critical requirement, the architecture should be

designed so that safety-related operations are all located in either a

single component or in a small number of components. This reduces

the costs and problems of safety validation and makes it possible to

provide related protection systems that can safely shut down the

system in the event of failure.

4. Availability If availability is a critical requirement, the architecture

should be designed to include redundant components so that it is

possible to replace and update components without stopping the

system.

5.Maintainability If maintainability is a critical requirement, the

system architecture should be designed using fine-grain, self-

contained components that may readily be changed. Producers of

data should be separated from consumers and shared data

structures should be avoided.

Architectural views Architectural views,discuss two issues that are

relevant to both of these:

 1. What views or perspectives are useful when designing and

documenting a system’s architecture?

2. What notations should be used for describing architectural

models?

It is impossible to represent all relevant information about a system’s

architecture in a single architectural model, as each model only

shows one view or perspective of the system. It might show how a

system is decomposed into modules, how the run-time processes

interact, or the different ways in which system components are

distributed across a network. All of these are useful at different times

so, for both design and documentation, you usually need to present

multiple views of the software architecture. There are different

opinions as to what views are required.

Krutchen (1995), in his well-known 4+1 view model of software

architecture, suggests that there should be four fundamental

architectural views, which are related using use cases or scenarios.

The views that he suggests are:

1. A logical view which shows the key abstractions in the system as

objects or object classes. It should be possible to relate the system

requirements to entities in this logical view.

2. A process view which shows how, at run-time, the system is

composed of interacting processes. This view is useful for making

judgments about nonfunctional system characteristics such as

performance and availability.

3. A development view which shows how the software is

decomposed for development, that is, it shows the breakdown of the

software into components that are implemented by a single

developer or development team. This view is useful for software

managers and programmers.

4. A physical view which shows the system hardware and how

software components are distributed across the processors in the

system. This view is useful for systems engineers planning a system

deployment.

 Hofmeister et al. (2000) suggest the use of similar views but add to

this the notion of a conceptual view. This view is an abstract view of

the system

The use of architectural styles is to establish a structure for all the

components of the system.

1. Data centered architectures:

 . A data store will reside at the center of this architecture

and is accessed frequently by the other components that

update, add, delete or modify the data present within the

store.

 Variation of this approach are used to transform the

repository into a blackboard when data related to client

or data of interest for the client change the notifications

to client software.

 This data-centered architecture will promote integrability.

This means that the existing components can be changed

and new client components can be added to the

architecture without the permission or concern of other

clients.

 Data can be passed among clients using blackboard

mechanism.

2. Data flow architectures:

 This kind of architecture is used when input data to be

transformed into output data through a series of

computational manipulative components.

 The figure represents pipe-and-filter architecture since it

uses both pipe and filter and it has a set of components

called filters connected by pipes.

 Pipes are used to transmit data from one component to

the next.

 Each filter will work independently and is designed to take

data input of a certain form and produces data output to

the next filter of a specified form. The filters don’t require

any knowledge of the working of neighboring filters.

 If the data flow degenerates into a single line of

transforms, then it is termed as batch sequential. This

structure accepts the batch of data and then applies a

series of sequential components to transform it.

3. Call and Return architectures: It is used to create a program

that is easy to scale and modify. Many sub-styles exist within

this category. Two of them are explained below.

 Remote procedure call architecture: This components is

used to present in a main program or sub program

architecture distributed among multiple computers on a

network.

 Main program or Subprogram architectures: The main

program structure decomposes into number of

subprograms or function into a control hierarchy. Main

program contains number of subprograms that can invoke

other components.

1. Object Oriented architecture: The components of a system

encapsulate data and the operations that must be applied to

manipulate the data. The coordination and communication

between the components are established via the message

passing.

2. Layered architecture:

 A number of different layers are defined with each layer

performing a well-defined set of operations. Each layer

will do some operations that becomes closer to machine

instruction set progressively.

 At the outer layer, components will receive the user

interface operations and at the inner layers, components

will perform the operating system

interfacing(communication and coordination with OS)

 Intermediate layers to utility services and application

software functions.

Reference:

https://www.geeksforgeeks.org/software-engineering-architectural-

design/

https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/Soft

ware-Engineering-9th-Edition-by-Ian-Sommerville.pdf

