Computer network 23-01-21

PHYSICAL /MAC/ LINK ADDRESS

The physical address, also known as the link address, is the address of a node as defined by its LAN or WAN. It is included in the frame used by the data link layer. It is the lowest-level address. The size and format of these addresses vary depending on the network. For example, Ethernet uses a 6-byte (48-bit) physical address that is imprinted on the network interface card (NIC). Most local area networks use a 48-bit (6-byte) physical address written as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown below. This 6 byte is divided in 2 parts 1-3 byte for OUI(organizational unique identification) 2-3 byte for serial number

> 07:01:02:01:2C:4B A 6-byte (12 hexadecimal digits) physical address

In Figure below a node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link (a LAN). At the data link layer, this frame contains physical (link) addresses in the header. These are the only addresses needed. The rest of the header contains other information needed at this level. The trailer usually contains extra bits needed for error detection. The data link layer at the sender receives data from an upper layer. It encapsulates the data in a frame, adding a header and a trailer. The header, among other pieces of information, carries the receiver and the sender physical (link) addresses. Note that in most data link protocols, the destination address 87 in this case, comes before the source address (10 in this case). The frame is propagated through the LAN. Each station with a

physical address other than 87 drops the frame because the destination address in the frame does not match its own physical address. The intended destination computer, however, finds a match between the destination address in the frame and its own physical address. The frame is checked, the header and trailer are dropped, and the data part is decapsulated and delivered to the upper layer.

Unicast, Multicast, and Broadcast Physical Addresses Physical addresses can be either unicast (one single recipient), multicast (a group of recipients), or broadcast (to be received by all systems in the network). Some networks support all three addresses. A source address is always a unicast address—the frame comes from only one station. The destination address, however, can be unicast, multicast, or broadcast. The least significant bit of the first byte defines the type of address.

Define the type of the following destination addresses:

- 1. 4A:30:10:21:10:1A
- 2. 2.47:20:1B:2E:08:EE
- 3. 3. FF:FF:FF:FF:FF:FF

Port Addresses

• The IP address and the physical address are necessary for a quantity of data to travel from a source to the destination host. However, arrival at the destination host is not the final objective of data communications on the Internet. Computers are devices that can run multiple processes at the same time. The end objective of Internet communication is a process communicating with another process. For example, computer A can communicate with computer C by using TELNET. At the same time, computer A communicates with computer B by using the File Transfer Protocol (FTP). For these processes to receive data simultaneously, we need a method to label the different processes. In other words, they need addresses. In the TCP/IP architecture, the label assigned to a process is called a port address. A port address in TCP/IP is 16 bits in length. A port address is a 16-bit address represented by one decimal number as shown. 1 1 1

A 16-bit port address represented as one single number

The following Figure shows two computers communicating via the Internet. The sending computer is running three processes at this time with port addresses a, b, and c. The receiving computer is running two processes at this time with port addresses j and k. Process a in the sending computer needs to communicate with process j in the receiving computer. Note that although both computers are using the same application, FTP, for example, the port addresses are different because one is a client program and the other is a server program.

To show that data from process a need to be delivered to process j, and not k, the transport layer encapsulates data from the application layer in a packet and adds two port addresses (a and j), source and destination. The packet from the transport layer is then encapsulated in another packet at the network layer with logical source and destination addresses (A and P). Finally, this packet is encapsulated in a frame with the physical source and destination addresses of the next hop. We have not shown the physical addresses because they change from hop to hop inside the cloud designated as the Internet. Note that although physical addresses change from hop to hop, logical and port addresses remain the same from the source to destination.

In the TCP/IP protocol suite, the port numbers are integers between 0 and 65,535.

The client program defines itself with a port number, called the ephemeral port number (chosen randomly). The word ephemeral means short lived.

The server process must also define itself with a port number (called well-known port numbers). This port

number, however, cannot be chosen ra

