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This review first discusses ways in 
which we can evaluate transcrip-

tion inhibition, describe changes in 
nuclear structure due to transcription 
inhibition, and report on genes that are 
paradoxically stimulated by transcrip-
tion inhibition. Next, it summarizes the 
characteristics and mechanisms of com-
monly used inhibitors: α-amanitin is 
highly selective for RNAP II and RNAP 
III but its action is slow, actinomycin D 
is fast but its selectivity is poor, CDK9 
inhibitors such as DRB and flavopiridol 
are fast and reversible but many genes 
escape transcription inhibition. New 
compounds, such as triptolide, are fast 
and selective and able to completely 
arrest transcription by triggering rapid 
degradation of RNAP II.

Introduction

Many anti-cancer drugs inhibit transcrip-
tion and most transcription inhibitors 
have useful pharmacological properties. 
Many experiments require inhibition of 
transcription. In yeast, thermosensitive 
mutations in RNA polymerase (RNAP) 
subunits provide precious tools. A thermo-
sensitive mutation has been characterized 
in mammalian RNAP II largest subunit, 
Rpb1.1 However, transcription is main-
tained for at least one day at non-permissive 
temperature, which is a major inconve-
nient. Therefore, “chemical genetics”  
or “chemical biology” is usually pre-
ferred. Among the various drugs available 
to inhibit transcription, how to choose 
which one to use? Each has its advantages 
and drawbacks (Table 1). Selectivity, effi-
ciency, rapidity of action and reversibility 
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are key issues. How can we detect if a new 
compound inhibits transcription? This 
review will deal first with the general 
questions of how to evaluate transcription 
inhibition, describe changes in nuclear 
structure due to transcription inhibition, 
and report on genes that are paradoxi-
cally stimulated by transcription inhibi-
tion. Next, we will focus on widely used 
compounds (α-amanitin, actinomycin D, 
DRB, flavopiridol) and triptolide, a new 
compound that looks very promising.

Evaluating Transcription  Inhibition

How can we determine if a compound 
inhibits transcription? Quantification of 
3H-uridine incorporation into RNA is the 
oldest method. 3H-uridine permeates rap-
idly into cells, is metabolized and incor-
porated into nascent RNA transcripts. 
3H-RNA accumulation results from com-
peting RNA synthesis and degradation. 
Thus, short labeling time (a fraction of 
an hour for mammalian cells) is recom-
mended to favor synthesis over degradation. 
However, this method does not distinguish 
between polymerases. It gives a maximal 
weight to RNAP I activity as rRNAs repre-
sent 60–70% of total transcript mass.

Investigating RNA levels by northern 
blot, RT-Q-PCR, gene arrays on DNA 
chips or massive sequencing provides infor-
mation on specific transcripts. One may 
follow the effect of drugs on short-lived 
RNAs using RNAs with long half-lives 
such as actin or rRNA as reference controls. 
However, one should keep in mind that 
inhibition of transcription may enhance 
the stability of some mRNAs, such as those 
of DNA damage-inducible (gadd) genes, 
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or defects in rRNA processing function as 
triggers of that process.20,28 An arrest in 
ribosome assembly releases ribosomal pro-
tein subunits such as RPL26. These trap 
the Hdm2 (human) or mdm2 (murine) 
E3 ubiquitin ligases. Competition with 
p53 binding to Hdm2/mdm2, thus pre-
vents its degradation.29,30 Furthermore, 
the available RPL26 activates p53 mRNA 
translation. Indeed, efficient translation of 
p53 mRNA relies upon binding of RPL26 
to a cap-independent and poly(A)-inde-
pendent interaction between its 5' and 3' 
UTR.31,32

Changes in Extractability  
of Nuclear Components

Transcription inhibition is accompanied 
by notable changes in biochemical prop-
erties of nuclear proteins such as histones 
and hnRNPs. Histone H2B ubiquitina-
tion and histone H1b phosphorylation 
decrease in cells treated with either acti-
nomycin D or DRB.33,34 hnRNPs that 
chaperone pre-messenger RNA are easier 
to extract from nuclei of cells treated 
with inhibitors of class II gene transcrip-
tion.18,35,36 In contrast, efficient extraction 
of the positive transcription elongation 
factor (P-TEFb) subunits (CDK9 and/
or Cyclin Ts) from nuclear material is 
harder and requires an increase in the 
ionic strength of the extraction buffer.37 

during global transcription inhibition. 
As a first example, transcription driven 
by the HIV-LTR is enhanced by ama-
nitin and actinomycin.11,12 The “silent” 
HIV-LTR drives an efficient transcrip-
tion initiation that aborts after 60–80 
nucleotides because P-TEFb recruit-
ment to the promoter is deficient and 
cannot oppose the NELFs’ to promote 
a productive elongation of transcription. 
Amanitin and actinomycin treatments 
enhance P-TEFb activity and release the 
block to elongation of transcription. This 
effect might be consequence of a feed-
back loop regulation leading to P-TEFb 
hyperactivation.13,14 Upon transcription 
arrest, heterogeneous nuclear ribonucleo-
proteins (hnRNPs) that chaperone the 
nascent transcript are released.15 Some of 
them (hnRNP A, K, Q and R types) then 
trap 7SK RNA that is no more available 
to bind the HEXIM1 protein and inacti-
vate P-TEFb.16-18

A general transcription inhibition 
results in p53 accumulation, which acti-
vates transcription of p53 target genes, 
such as p21CIP and Hdm2,19-21 and pro-
motes p53 translocation into mitochon-
dria leading to apoptosis.22 Following 
treatment with flavopiridol, DRB, amani-
tin or actinomycin, proteins such as p53 
accumulate because of a feedback loop 
involving enhanced synthesis23 and protein 
stability.24-27 Inhibition of rRNA synthesis 

and lead to their accumulation when inhib-
itors are employed at moderate concentra-
tions.2-5 But unstable RNAs such as c-fos 
do not seem to be affected.6

Fluorescence in situ hybridization 
(FISH) is a direct way to observe tran-
scription of specific genes.7 Although sin-
gle RNA molecules might be detected and 
counted, this method is quite tricky to set 
up.8 An easier, though time-consuming, 
alternative is chromatin immunopre-
cipitation (DNA ChIP) using anti-poly-
merase antibodies (the Rpb3 subunit or 
the N-terminal domain of Rpb1 are rec-
ommended). The distribution of RNAP 
molecules on a gene determined by 
Q-PCR roughly reflects its transcription. 
However, choosing adequate controls to 
evaluate immunoprecipitation efficiencies 
in different samples is a major difficulty.

The easiest quantitative procedure is def-
initely to monitor an inducible reporter gene 
such as luciferase. Tetracycline-inducible 
promoters are particularly convenient as 
they respond strongly and very quickly, 
within a few hours, but they require the use 
of genetically engineered cell lines.9,10

Transcription of a Subset  
of Genes is Enhanced Upon 

Global Transcription Inhibition

Due to feedback loops, enhanced tran-
scription of a small set of genes occurs 

Table 1. Overview of widely used inhibitors of transcription

Actinomycin D α-amanitin DRB Flavopiridol Triptolide

Concentration

>0.01 µgml-1 for class 
I genes 

>1 µgml-1 for class II 
genes

>2 µgml-1 100 µM >0.5 µM 1 µM

Stock solution in DMSO aqueous DMSO aqueous DMSO

Target DNA intercalation RNAPII >> RNAPIII CDK9 in P-TEFb CDK9 in P-TEFb XPB in TFIIH

RNA polymerase 
elongation inhibited

RNA synthesis 
 inhibited

RNAP II elonga-
tion inhibited rRNA 

 processing impaired

RNAP II elonga-
tion inhibited, rRNA 
 processing impaired

RNAP I and RNAP II 
 initiation inhibited

Target Selectivity
GC-rich DNA 
sequences

RNAPII & RNAPIII 
only known targets

Other kinases inhibited Other kinases inhibited
Other potential target: 

Polycystin-2 calcium 
channel

Inhibition 
Selectivity

Class I >> Class II >> 
Class III transcription

Class II >> Class III 
transcription

Class II transcription 
Class I processing

Class II transcription, 
Class I processing

Class II & Class I 
 transcription

Consequence on 
RNA polymerase 

II

CTD hyperphosphor-
ylation

RNAPII degradation
CTD serine 2 dephos-

phorylation
CTD serine 2 dephos-

phorylation

Proteasome-
dependent RNAPII 

degradation

Reversibility Weak No Yes ? No

Rate Fast, minutes Slow, hours Fast, minutes Fast, minutes Fast, minutes
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amanitin-resistant alleles of Rpb1 can be 
used as efficient and convenient selection 
genes to obtain stable cell transformants. 
They are particularly convenient to obtain 
cells expressing tagged Rpb1 subunits 
that replace the endogenous one targeted 
to degradation by α-amanitin. The low 
concentration to be used (2 μg/ml with 
human cells) makes it a relatively inexpen-
sive option.

Triptolide–Inhibiting TFIIH  
at Transcription Initiation

Triptolide is a diterpene triepoxide 
extracted from the plant Tripterygium 
wilfordii, used in Chinese traditional 
medicine. It has multiple interesting 
pharmacological properties including 
anti-inflammatory, immune modula-
tion, anti-proliferative and pro-apoptotic 
activities (reviewed in ref. 56). Triptolide 
inhibits transcription at submicromo-
lar concentrations.57 Most of its pro-
posed pharmacological effects relate to 
decreased gene expression56 and might 
thus be attributed to inhibition of tran-
scription. Triptolide binds to the XPB 
subunit of TFIIH.58 The ATP-dependent 
helicase activity of XPB is required for 
the first step in transcription to open the 
double-strand DNA and create a “tran-
scription bubble”. Triptolide inhibits the 
ATPase activity of XPB, thus it prevents 
the formation of the “transcription bub-
ble” and hence initiation of transcription. 
Triptolide treatment is irreversible as it 
binds covalently to XPB and induces a 
fast proteasome-dependent degradation 
of RNAPII.58,59 Furthermore, class I gene 
transcription also relies on TFIIH and is 
inhibited by triptolide. This inhibitor is 
active at very low concentrations (IC

50
 = 

109 nM for inhibition of RNA synthe-
sis in HeLa cells). Less than an hour is 
required to inhibit transcription in HeLa 
cells at 10 μM concentration (Nguyen 
VT and Bensaude O, unpublished data). 
It is highly specific although it might also 
bind polycystin-2, a calcium channel.60 
Triptolide dissolves poorly in water, but 
promising water-soluble derivatives have 
been developed.56 Because of its selectiv-
ity and its very rapid action, we expect 
the use of triptolide or its water-soluble 
derivatives to be generalized.

All these changes are readily observable 
under the microscope and might serve as 
reliable indicators of transcription inhibi-
tion. Assembly of PSF into the DNCs is 
likely the most reliable indication of tran-
scription inhibition.

α-Amanitin–Inhibiting RNA  
Polymerases II and III

α-Amanitin is a cyclic peptide isolated 
from Amanita mushrooms and respon-
sible for their extreme toxicity. Amanitin 
binds with high specificity and high 
affinity (K

i
 = 3–4 nM) near the catalytic 

active site of RNAP II.43 It traps a con-
formation of the enzyme that prevents 
nucleotide incorporation and translo-
cation of the transcript.44,45 RNAP II is 
the most sensitive polymerase.46,47 RNAP 
III is a hundred-fold less sensitive than 
RNAP II. However, reduced expression 
of a number of class III genes in the pres-
ence of amanitin might be attributed to 
their regulation by RNAP II.48,49 RNAP 
I is insensitive to amanitin.

α-amanitin is active on living plant, 
nematode, insect and mammalian cells. 
Yeast cells are insensitive to amanitin 
because of deficient uptake of the drug; 
nevertheless, the S. cerevisiae enzyme is 
highly susceptible. The organic anion-
transporting polypeptide (OATP3) has 
been identified as the amanitin uptake 
transporter in human hepatic cells.50 
Amanitin uptake is slow (several hours). 
It is unusual to observe short-term 
effects. It must be used at much higher 
concentrations with living cells (at least 
2 μg/ml) than in vitro. Methyl-amanitin 
oleate, a chemically modified derivative, 
permeates better and can be used at lower 
concentrations (0.010–0.1 μg/ml with 
human cells).

Amanitin is an irreversible inhibitor 
because it triggers degradation of Rpb1, 
the largest RNAP II subunit.51 α-amanitin 
promotes polyubiquitination of Rpb1 
in a nuclear extract prepared from cells 
arrested in S-phase.52,53 However, the pro-
tease pathway has not been identified in 
living cells yet.

Several mutations in Rpb1 have 
been isolated that confer resistance 
to α-amanitin.54,55 Despite mildly 
affecting the enzyme performance, 

Changes in P-TEFb and hnRNP proper-
ties are linked by a feedback loop involv-
ing 7SK snRNA.13,14

Changes in Nuclear Structure

Transcription inhibition results in major 
changes in nuclear structures. The nucleo-
lus is reorganized upon transcription inhi-
bition. Low concentrations of actinomycin 
D, which primarily inhibit RNAP I (i.e., 
rRNA transcription), result in segregation 
of the fibrillar center, the dense fibrillar 
center and the granular components of 
the nucleolus.38 Blockage of rRNA tran-
scription (by oxaliplatin, doxorubicin, 
mitoxantrone or methotrexate) or early 
rRNA processing steps (by camptothecin 
or CDK9 inhibitors such as flavopiridol 
or roscovitine) cause nucleolar disintegra-
tion, whereas blockage of late rRNA pro-
cessing steps (by 5-fluorouracil, MG132 
or homoharringtonine) leave nucleoli 
intact.39 Conditions that inhibit RNAP II 
(5 μg/ml actinomycin D, DRB or ama-
nitin) result in aggregation of several pro-
teins from the nucleoplasm into nucleolar 
caps (for an extensive description on acti-
nomycin effects on nucleolar caps see ref. 
40). Two distinct caps are distinguished, 
the dark nucleolar caps (DNC) and the 
light nucleolar caps (LNC). Fibrillarin 
might be used as a marker of LNCs. The 
PTB-associated splicing factor (PSF) is 
mostly nucleoplasmic. Its assembly into 
DNCs is spectacular and might be used 
as a practical indicator of transcription 
inhibition. RNAP III inhibition with 
high amanitin concentrations promotes 
the reorganization of a perinucleolar 
compartment (PNC) distinct from the 
LNC and the PNCs.41 This structure is 
enriched in polypyrimidine track binding 
protein (PTB) and several class III RNAs. 
Following RNAP III inhibition, the PNC 
is fragmented into a dotted structure 
forming a rosette with a hollow structure.

The splicing snRNPs usually co-
localize with p80 coilin in coiled bodies; 
but, in cells treated with inhibitors, coi-
lin clusters around the nucleolus in LNCs 
and snRNPs aggregate in distinct nucleo-
plasmic speckles.42 U1 snRNP undergoes 
the most spectacular re-localization; it 
becomes clustered around the nucleoli in 
the DNCs.
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Despite the selectivity issue and limi-
tations due to its poor solubility, DRB 
remains a very popular inhibitor. Its major 
advantages are common usage, rapidity of 
action and reversibility.

Flavopiridol is now becoming popu-
lar because it is the most efficient known 
CDK9 inhibitor.83 Its inhibition constant 
(K

i
 = 3 nM) is several orders of magnitude 

lower than the ATP binding constant  
(K

m
 = 36 μM). The crystal structure of 

CDK9 complexed with flavopiridol has 
been solved.84 It is buried into the ATP 
binding site after inducing a structural 
change in the kinase. However, it also 
inhibits rather efficiently (10-fold less) the 
cell cycle CDK1 and CDK474 as well as 
CDK8, the mediator kinase.85 Its major 
advantages reside in its water solubility 
and its efficiency at submicromolar con-
centrations (IC

50
 = 100–300 nM) on liv-

ing cells.

Actinomycin D—DNA Intercalators 
Blocking the Progression  

of RNA Polymerases

Many DNA intercalators inhibit tran-
scription. But not all do so. For example, 
Hoechst 33,342 intercalates into nuclear 
DNA of living cells but does not affect 
its transcription significantly.6 Ethidium 
bromide affects mitochondrial but not 
nuclear transcription.86

Actinomycin D or Dactinomycin is likely 
the most popular inhibitor of transcrip-
tion. It comprises two cyclic peptides 
linked together by a phenoxazine deriva-
tive. It is isolated from Streptomyces bac-
teria. Actinomycin D is also one of the 
older chemotherapy drugs, commonly 
used to treat gestational trophoblas-
tic cancer, testis cancer, Wilm’s tumor, 
rhabdomyosacoma and Ewing’s sarcoma. 
Transcription by all three eukaryotic 
polymerases is affected. Yet, class I gene 
transcription is by far the most sensitive  
(0.05 μg/ml) followed by class II gene 
transcription (0.5 μg/ml) and class III 
(around 5 μg/ml). The length of the tran-
scription unit and its DNA sequence com-
position are determinant.87 Actinomycin 
preferentially intercalates into GC rich 
sequences and stabilizes topoisomerase-I  
DNA covalent complexes that pre-
vent RNA polymerase progression.88 

efficiencies of various inhibitors on a 
panel of kinases may be found in refer-
ence 72–74. Many old studies used DRB 
as a casein kinase 2 inhibitor or H-8 as a 
PKA inhibitor, and improper conclusions 
were often drawn. These compounds 
efficiently target CDK9 and thus act as 
general transcription inhibitors like DRB 
or flavopiridol. New screenings have been 
designed to provide more selective inhibi-
tors that might become useful pharmaco-
logical agents.75

One should mention the exquisitely 
selective “chemical genetic” method 
developed by Shokat and coworkers.76 
The ATP binding site of the kinase to be 
investigated is enlarged by replacement of 
a voluminous aminoacid residue selected 
from crystallographic data. The modi-
fied kinase becomes highly susceptible to 
naphtyl-ATP, which is too large to enter 
the ATP binding site and inhibit any 
natural kinase. This method has been suc-
cessfully used with transcription CDKs.77 
However, it requires a gene replacement 
strategy that is relatively easy to set up in 
simple organisms such as yeast but quite 
difficult in mammals.

DRB (5,6-Dichloro-1-beta-Ribo-
furanosyl Benzimidazole) has been widely 
used as a transcription inhibitor. This 
compound was initially reported to inhibit 
nuclear heterogeneous RNA (hnRNA) 
synthesis.78,79 It quickly appeared to 
cause “premature” chain termination. 
CDK9 was identified as its major target.80 
However, it also inhibits CDK7, the kinase 
subunit of TFIIH, with 3-fold lower effi-
ciency.72 The above-mentioned “DSIF” or 
DRB Sensitivity Inducing Factor refers to 
DRB. The crystal structure of CDK9 com-
plexed with DRB has been resolved.81 The 
chlorine atoms form halogen bonds with a 
hinge region characteristic of CDK9 near 
the ATP binding site.

DRB has to be used at concentrations 
close to its maximal solubility (100 μM). 
Mother solutions in DMSO and fast 
homogenization in warm media are rec-
ommended. RNAPII transcription arrests 
within minutes following addition of DRB 
to culture medium. Efficient transcription 
resumes within minutes when the medium 
is replaced by fresh medium to remove 
the drug. This property has recently been 
used to measure transcription rates.82

DRB and Flavopiridol—Kinase 
Inhibitors Preventing Entry  

into Transcription Elongation

CDK9 is required for efficient class I and 
class II gene expression. Transcription is a 
multistep process, RNAPs bind to DNA, 
the dsDNA is opened to form a so-called 
“transcription bubble” and transcription 
initiates. For most class II genes, nega-
tive elongation factors (NELFs) and Spt5, 
also known as DRB Sensitivity Inducing 
Factor (DSIF), provoke RNAP II paus-
ing shortly after initiation and prevent 
a productive elongation of transcrip-
tion.61 Phosphorylation of these factors by 
Positive Transcription Elongation Factor 
(P-TEFb) is required to overcome the 
obstacle. CDK9 is the kinase subunit of 
P-TEFb. Hence, any CDK9 inhibitor will 
prevent productive transcription of most 
genes. Overall, Serine 2 phosphoryla-
tion in the heptapeptide CTD repeats of 
RNAP II decreases readily in cells exposed 
to CDK9 inhibitors.64,65 Serine 2 phos-
phorylation of the CTD is required for 
pre-mRNA processing (splicing, termina-
tion and polyadenylation). Thus, splic-
ing becomes impaired.66 Transcription of 
short intron-less histone and <u> snRNA 
encoding genes is not affected by CDK9 
inhibition.62,63 Instead, 3' end processing 
of histone or U snRNA encoding genes 
is impaired.62,63 CDK9 inhibitors also 
affect an early step in rRNA (class I gene) 
processing, thereby impairing ribosome 
biogenesis.39

Many compounds with potential 
pharmacological applications inhibit 
CDK9. Several CDK9 inhibitors are 
currently under clinical trial in chemo-
therapy,67 in particular against chronic 
lymphocytic leukemia.68 Some of these 
CDK9 inhibitors are occasionally used 
as inhibitors of transcription (e.g., rosco-
vitine—also known as selicilib37—the 
isoquinoline sulfonamide (H-8),69 and 
SNS-302).70 However, DRB and flavopiri-
dol are the most popular for molecular/
cellular biology use (see below).

All CDK9 inhibitors compete with 
ATP for the kinase active site. Given its 
conservation, the selectivity of protein 
kinase inhibitors is a major issue that 
has been largely discussed by Knight and 
Shokat.71 Comparison between inhibition 
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