CHAPTER – 3

RANK OF A MATRIX.

3.1 Sub Matrix A matrix obtained from a matrix A by omitting some of its rows or columns

(or both) is called a sub matrix of A

For Example the matrices

$$A_{1} = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}, A_{2} = \begin{bmatrix} 2 & 1 & 9 \\ 3 & 4 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 9 & 5 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix}, A_{4} = \begin{bmatrix} 2 & 1 & 9 \\ 3 & 4 & 1 \\ 5 & 7 & 2 \\ 4 & 1 & 7 \end{bmatrix}$$
etc. are the sub matrices of a matrix $A = \begin{bmatrix} 2 & 1 & 9 & 5 \\ 3 & 4 & 1 & 0 \\ 5 & 7 & 2 & 1 \\ 4 & 1 & 7 & 7 \end{bmatrix}$ in which A_{1} and A_{3} are square sur matrices of of

order 2 and 3 respectively of A.

As in care of set, every matrix is considers as in sub matrix of itself

3.2 Minor of A Matrix The determinant of a square sub matrix of order r is called a minor of order r of A. A minor of order r is said to be r-rowed minor.

For Example-Consider a matrix $A = \begin{bmatrix} 2 & 1 & 1 & 2 \\ 0 & 2 & 0 & 4 \\ 3 & 3 & 2 & 6 \end{bmatrix}$ On omitting forth column, we get a square sub matrix $A_1 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ 3 & 3 & 2 \end{bmatrix}$ and its determinant

i.e. $|A_1| = \begin{vmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ 3 & 3 & 2 \end{vmatrix} = 2$ is a minor of order 3

On omitting third columns we get square matrix

 $A_2 = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 2 & 4 \\ 3 & 3 & 6 \end{bmatrix} \text{ and } |A_2| = \begin{vmatrix} 2 & 1 & 2 \\ 0 & 2 & 4 \\ 3 & 3 & 6 \end{vmatrix} \text{ is also a minor of order 3}$

On omitting third row and third & forth columns, we get the square sub matrix $A_3 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ and $|A_3|$ is minor of order 2.

On omitting second row and second & third columns we get square matrix $A_4 = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ and $|A_4|$ is again a minor of order 2 since $|A_1| = 2 \neq 0$ & $|A_3| = 4 \neq 0$, then these are called non zero (or non vanishing) minors whereas $|A_2| = 0$ & $|A_4| = 0$, so these are called zero (or vanishing) minors of A

(a) from this Example it is also clear that there may be more than one minors Remarks of the same order obtained by deleting different rows and/or columns

(b) The order of the largest order minor of a matrix of order $m \times n =$ $\min(m, n)$

For Example the order of the largest order minor of a matrix $\begin{bmatrix} 5 & 2 & 3 & 1 \\ 4 & 6 & 2 & 8 \\ 9 & 5 & 6 & 2 \end{bmatrix}_{3 \times 4}$ is 3

(c) the order of the largest order minor of a n-square matrix = nand

e.g. the order of the largest order minor of
$$\begin{bmatrix} 2 & 3 & 1 & 5 \\ 1 & 0 & 3 & 1 \\ 2 & 6 & 4 & 4 \\ 5 & 1 & 0 & 2 \end{bmatrix}$$
 is 4

3.3 RANK OF A MATRIX

The rank of a matrix A is r (a positive integer) if at least one minor of order r of A is non zero whereas it's all minors of order (r + 1) are zero. The rank of a matrix A denoted by r(A) or $\rho(A)$.

Important Facts

ii. The rank of a null matrix of any order is zero

The rank of an $m \times n$ matrix A is less than or equal to the min. $\{m,n\}$ iii. i,e. $\rho(A) \leq \min\{m, n\}$

The rank of a non- singular square matrix is always equal to its order. iv.

 $\rho(I_n) = n$, where In is a unit matrix of order v.

vi.
$$\rho(A') = \rho(A) = \rho(A^{\theta})$$

The rank of the product of two matrices cannot exceed the rank of either matrix i.e. vii. $\rho(AB) \leq \rho(A)$ or $\rho(B)$

ix. Let A is a non zero column matrix and B is a non zero row matrix then $\rho(AB) = 1$.

If A and B be two equivalent matrices, then rank $A = \operatorname{rank} B$.

X.

- **xi.** If A and B are equivalent matrices, then there exist non-singular matrices P and Q such that B = PAQ.
- **xii.** If two matrices A and B have the same size and the same rank, they are equivalent.

xiii. Two m x n matrices are equivalent if and only if they have the same rank.

3.3.1 Nullity of a matrix- If A is a square matrix of order *n* then $n - \rho(A)$ is called the nullity of the matrix A and is denoted by N(A). Thus the nullity of a non-singular square matrix of order *n* is zero.

3.4 METHODS TO FIND RANK OF A MATRIX

The methods, which are often used of find rank of the matrices, can be described as

- 1. By using definition with or without means of the elementary transformations
- 2. By reducing into normal form
- **3.** By reducing into echelon form.

1. By Using Definitions –

From definition of rank, the rank of a matrix A is the order of the largest order non zero minor of A so that to find the rank of a matrix A, we have to identify the order of the largest non-zero minor .But in the case of matrices of large order, this process, involves a lot of computations, So it is tedious.

To reduce computations, we transform maximum possible entries of A to zero by applying elementary transformations and then use definition.

SOLVED EXAMPLES

	[5	-1	0]
Example 1 Find the rank of matrix $A =$	3	1	2
	2	3	6

Solution- Since A is a square matrix then we have

$$|A| = \begin{vmatrix} 5 & -1 & 0 \\ 3 & 1 & 2 \\ 2 & 3 & 6 \end{vmatrix} = 5(6-6) + 1(18-4) + 0.(9-2)$$

= 0 + 14 + 0 $= 14 \neq 0$

i.e. $|A| \neq 0$ which is the largest non zero minor of A therefore (A) = 3

Example 2 Find the rank of the following matrices

i. $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$ ii. $B = \begin{bmatrix} 0 & i & -i \\ -i & 0 & i \\ i & -i & 0 \end{bmatrix}$ iii. $C = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 4 & 6 \\ 0 & 6 & 9 \end{bmatrix}$ Solution (i) we have $|A| = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{vmatrix}$ = 1(24 - 25) - 2(18 - 20) + 3(15 - 16) = -1 + 4 - 3 = 0 |A| = 0 i.e, minor |A| = 0 i.e, minor of order 3 is zero $\Rightarrow e(A) < 3$

Further the minor of order 2 obtained by deleting third row & third column

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2 \neq 0$$

Hence $\rho(A) = 2$

(ii) We have
$$|B| = \begin{vmatrix} 0 & i & -i \\ -i & 0 & i \\ i & -i & 0 \end{vmatrix} = 0(0+i)^2 - i(0-i)^2 - i(i^2 - 0)$$

= $0 + i^3 - i^3 = 0$
 $\therefore \rho(B) < 3$

And the minor of 2 obtained by deleting the first row & third column

$$\begin{vmatrix} -i & 0 \\ i & -i \end{vmatrix} = i^2 - 0 = -1 \neq 0$$

Hence
$$\rho(B) = 2$$

(iii) It is obvious that |C| = 0 and also all minors of order 2 are zero but each element of C is not zero, therefore $\rho(C) = 1$

Example 3 Find the rank of matrix :
$$A = \begin{bmatrix} 1 & 2 & 3 & -4 \\ -2 & 3 & 7 & -1 \\ 1 & 9 & 16 & -13 \end{bmatrix}$$

Solution

$$A = \begin{bmatrix} 1 & 2 & 3 & -4 \\ -2 & 3 & 7 & -1 \\ 1 & 9 & 16 & -13 \end{bmatrix}$$
$$R_2 \to R_2 + 2R_1, R_3 \to R_3 - R_1$$
$$A \sim \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 7 & 13 & -9 \\ 0 & 7 & 13 & -9 \end{bmatrix}$$
$$R_3 \to R_3 - R_2$$
$$A \sim \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 7 & 13 & -9 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Here the number of non-zero rows is 2, therefore Rank (A) = 2.

Example 4 Find the rank of matrix :
$$A = \begin{bmatrix} 1 & 2 & 3 & -4 \\ -2 & 3 & 7 & -1 \\ 1 & 9 & 16 & -13 \end{bmatrix}$$

Solution: $A = \begin{bmatrix} 1 & 2 & 3 & -4 \\ -2 & 3 & 7 & -1 \\ 1 & 9 & 16 & -13 \end{bmatrix}$

 $R_2 \rightarrow R_2 + 2R_1$, $R_3 \rightarrow R_3 - R_1$

$$A \sim \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 7 & 13 & -9 \\ 0 & 7 & 13 & -9 \end{bmatrix}$$
$$R_3 \rightarrow R_3 - R_2$$
$$A \sim \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 7 & 13 & -9 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Here the number of non-zero rows is 2, therefore Rank (A) = 2.

2. By Reducing Into Normal Form

Any non-zero matrix A of rank r can be reduced by a sequence of elementary transformations to the Form $\begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$, where I_r is a unit matrix of order r. This form is called a normal form of A.

Other normal forms are I_r , $\begin{bmatrix} I_r \\ 0 \end{bmatrix}$, $[I_r, 0]$.

Theorem 1 Let A be an m × n matrix of rank r. Then there exist non-singular matrices P and Q of orders m and n respectively such that $PAQ = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$

NOTE-

- (i) Each elementary row transformation of A is equivalent to pre multiplying A by the corresponding elementary matrix.
- Each elementary column transformation is equivalent to post multiplying A by the corresponding elementary matrix.

So, there exist elementary matrices P_1, P_2, \dots, P_k and $Q_1, Q_2 \dots Q_t$ such that

$$P_1, P_2, \dots, P_k \land Q_1, Q_2 \dots Q_t = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

$$PAQ = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

where $P = P_1, P_2, ..., P_k \& Q = Q_1, Q_2 ... Q_t$,

Working Rule to Find Normal Form and Non Singular Matrices P&Q-

Let A be a non-zero $m \times n$ matrix.

Write $A = I_m A I_n$ (which is obviously true).

Reduce A on the L. H. S to normal form by applying elementary row and column transformations on A in such a way that the each elementary row transformation applied on A will be also applied to I_m on R. H. S and each elementary column transformation applied on A will be applied to I_n on R. H. S.

After a sequence of suitable applications of elementary transformations, we get

$$\begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix} = PAQ$$

Then the rank of A = the rank of $I_r = r$

SOLVED EXAMPLES

Example 1 Reduce the matrix $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 3 & 1 & 1 & 3 \end{bmatrix}$ to normal form and hence find the rank. Solution Let $A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 3 & 1 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 3 & 1 \\ 1 & 3 & 1 & 3 \end{bmatrix} C_1 \leftrightarrow C_2$ $\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & -1 & 1 \\ 1 & 3 & -1 & 2 \end{bmatrix} C_3 \rightarrow C_3 + (-2)C_2$ $\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & -1 & 1 \\ 1 & 3 & -1 & 2 \end{bmatrix} R_2 \rightarrow R_2 + (-2)R_1$ $\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 2 \end{bmatrix} R_3 \rightarrow R_3 - R_1$ $\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} R_3 \rightarrow R_3 - (-3)R_2$ $\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} R_3 \rightarrow \frac{1}{2}R_3$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \qquad C_4 \to C_4 - C_3$$
$$= [I_3:0]$$

This is the normal form of A and so ρ (A) = 3

Example 2 Find two non-singular matrices P and Q such that PAQ is in the normal form

Where
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
. Also find rank of A.

Solution Given
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}_{3 \times 3}$$

We have

 $A = I_3 A I_3$

[1	-1	-1		[1	0	0]		[1	0	0]
1	1	1	=	0	1	0	A	0	1	0
L3	1	1		Lo	0	1		0	0	1

To obtain matrices P & Q, we reduce the LHS matrix to normal form under the fact that

row operations to be applied to pre factor and column operations to be applied to post factor.

Apply, $C_2 \rightarrow C_2 + C_1$

 $C_3 \rightarrow C_3 + C_1$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 2 \\ 3 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and to post factor

$$\begin{array}{c} R_2 \to R_2 - R_1 \\ R_3 \to R_3 + (-3)R_1 \end{array} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

And to pre factor

$$R_2 \to \frac{1}{2} R_2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -1 & -2 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

And to pre factor

$$C_3 \to C_3 - C_2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -1 & -2 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

And to post factor

$$\begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix} = PAQ$$

It is the normal form of the given matrix and hence the rank of A i.e. ρ (A) = 2and

$$P = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -1 & -2 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

Example 3 Let $A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 4 & 2 & 2 & -1 \\ 2 & 2 & 0 & -2 \end{bmatrix}$. Find the non-singular matrices P and Q, such that

PAQ is in the normal form. Also find the rank of A.

Solution Given
$$A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 4 & 2 & 2 & -1 \\ 2 & 2 & 0 & -2 \end{bmatrix}_{3 \times 4}$$

We have $A = I_3 A I_4$

г1	_1	1	21	г1	Δ	01	<u>1</u>	0	0	ן0
	-1 2	-1			1		0	1	0	0
4	2	Ζ.	-1 =		1		0	0	1	0
12	2	0 ·	-21	LO	0	1]	LO	0	0	1

To obtain matrices P & Q, we reduce the LHS matrix to normal form under the fact that

row operations to be applied to pre factor and column operations to be applied to post factor.

$$\begin{split} R_{2} \to R_{2} + (-4)R_{1} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 6 & -9 \\ and to pre factor \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ C_{4} \to C_{4} + \frac{3}{2}C_{2} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{4}{3} & \frac{1}{3} & 0 \\ -1 & 0 & \frac{1}{2} \end{bmatrix} A \begin{bmatrix} 1 & 1 & 1 & -\frac{1}{2} \\ 0 & 1 & 0 & \frac{3}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ R_{3} \to R_{3} - R_{2} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{2}{3} & \frac{1}{6} & 0 \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{2} \end{bmatrix} A \begin{bmatrix} 1 & 1 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & \frac{3}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ R_{3} \to R_{3} - R_{2} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{2}{3} & \frac{1}{6} & 0 \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{2} \end{bmatrix} A \begin{bmatrix} 1 & 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 & \frac{3}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$[I_3:0]=PAQ,$$

Where
$$P = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{2}{3} & \frac{1}{6} & 0 \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{2} \end{bmatrix}, Q = \begin{bmatrix} 1 & 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 & \frac{3}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

and the rank of A = 3

Example 4 Find non-singular matrices P, Q so that PAQ is a normal form where

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

Solution Order of A is 3×4

Total number of rows in A = 3 Hence consider unit matrix I_3

Total number of column in A = 4

Hence consider unit matrix I_4

$$A_{3\times 4} = I_3 A I_4$$

$$\begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R_{1} \leftrightarrow R_{3}$$
$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 3 & -3 & 1 & 2 \\ 2 & 1 & -3 & -6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R_{2} \rightarrow R_{2} - 3R_{1}, R_{3} \rightarrow R_{3} - 2R_{1}$$
$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -6 & -2 & -4 \\ 0 & -1 & -5 & -10 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -3 \\ 1 & 0 & -2 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$C_{2} \rightarrow C_{2} - C_{1}, C_{3} \rightarrow C_{3} - C_{1}, C_{4} \rightarrow C_{4} - 2C_{1}$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -6 & -2 & -4 \\ 0 & -1 & -5 & -10 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -3 \\ 1 & 0 & -2 \end{bmatrix} A \begin{bmatrix} 1 & -1 & -1 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R_{2} \rightarrow -R_{2}, R_{3} \rightarrow -R_{3}, R_{2} \leftrightarrow R_{3}$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & 10 \\ 0 & 6 & -2 & -4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 2 \\ 0 & -1 & 3 \end{bmatrix} A \begin{bmatrix} 1 & -1 & -1 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R_{3} \rightarrow R_{3} - 6R_{2}$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & -28 & -56 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 2 \\ 6 & -1 & -9 \end{bmatrix} A \begin{bmatrix} 1 & -1 & -1 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{aligned} C_3 \to C_3 - 5C_2 , C_4 \to C_4 - 10C_2 \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -28 & -56 \end{bmatrix} &= \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 2 \\ 6 & -1 & -9 \end{bmatrix} A \begin{bmatrix} 1 & -1 & 4 & 8 \\ 0 & 1 & -5 & -10 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ R_3 \to -\frac{1}{28}R_3 \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -\frac{1}{6} & 0 & \frac{1}{28} \\ -\frac{1}{28} & \frac{9}{28} \end{bmatrix} A \begin{bmatrix} 1 & -1 & 4 & 8 \\ 0 & 1 & -5 & -10 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ C_4 \to C_4 - 2C_3 \\ \begin{bmatrix} 1 & -1 & 4 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -\frac{1}{28} & \frac{1}{28} & \frac{9}{28} \end{bmatrix} A \begin{bmatrix} 1 & -1 & 4 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

N = PAQ where

$$P = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 2 \\ -\frac{3}{14} & \frac{1}{28} & \frac{9}{28} \end{bmatrix} \text{ and } Q = \begin{bmatrix} 1 & -1 & 4 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note: P and Q are not unique.

3. By Reducing Into Echelon Form

A matrix is said to be in Echelon form if

(i) the number of zeros preceding the first non-zero element in each row is less than that in the subsequent row(s),

- (ii) all zero rows (i.e., rows with zero elements only), if any, are on the bottom of the matrix i.e. all the non- zero rows precede the zero rows,
- (iii) the first non-zero element in each row is unity.

For Example-
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & -1 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & -1 & 0 & 4 & 5 \\ 0 & -1 & 2 & 1 & 3 \\ 0 & 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ are in Echelon forms

Result: If a matrix A is reduced to Echelon form then rank of A i.e. $\rho(A)$ = the number of non-zero rows in its Echelon form

Thus in the above Examples, $\rho(A) = 2$, $\rho(B) = 2$, $\rho(C) = 3$ and $\rho(D) = 3$.

SOLVED EXAMPLES

Example 1 Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$
, by reducing to Echelon form.

Solution

Given
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 0 & -4 & -11 & 5 \end{bmatrix} \begin{bmatrix} R_2 \to R_2 + (-2)R_1 \\ R_3 \to R_3 + (-3)R_1 \\ R_4 \to R_4 + (-6)R_1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \end{bmatrix} R_4 \to R_4 - R_3$$
$$\sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & -3 & 2 \end{bmatrix} R_2 \leftrightarrow R_3$$

$$\sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & -3 & 2 \end{bmatrix} R_4 \to R_4$$
$$\sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix} R_4 \to R_4 - R_3$$

which is echelon form

 $\therefore \rho(A)$ = the number of non-zero rows in the Echelon form = 3

Example 2 Determine the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 3 & 6 & 9 & -3 \\ 2 & 4 & 6 & -2 \end{bmatrix}$, by reducing to echelon

form.

Solution

Given
$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 3 & 6 & 9 & -3 \\ 2 & 4 & 6 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} R_2 \to R_2 + (-3)R_1 \\ R_3 \to R_3 + (-2)R_1 \\ R_3 \to R_3 + (-2)R_1 \end{bmatrix}$$

= B, which is a row echelon matrix.

 \therefore r(A) = the number of non-zero rows in B = 1

Example 3 Find the value of k if the rank of the matrix $\begin{bmatrix} 6 & 3 & 5 & 9 \\ 5 & 2 & 3 & 6 \\ 3 & 1 & 2 & 3 \\ 2 & 1 & 1 & k \end{bmatrix}$ is 3.

Solution
$$A = \begin{bmatrix} 6 & 3 & 5 & 9 \\ 5 & 2 & 3 & 6 \\ 3 & 1 & 2 & 3 \\ 2 & 1 & 1 & k \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{5}{6} & \frac{3}{2} \\ 5 & 2 & 3 & 6 \\ 3 & 1 & 2 & 3 \\ 2 & 1 & 1 & k \end{bmatrix} R_1 \to \frac{1}{6}R_1$$

$$\sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{5}{6} & \frac{3}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{6} & -\frac{3}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{6} & -\frac{3}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{6} & -\frac{3}{2} \\ 0 & 0 & -\frac{4}{6} & k-3 \end{bmatrix}^{R_2 \to R_2 + (-5)R_1}_{R_3 \to R_3 + (-3)R_1} \\ \sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{5}{6} & \frac{3}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{6} & -\frac{3}{2} \\ 0 & 0 & \frac{4}{6} & 0 \\ 0 & 0 & -\frac{4}{6} & k-3 \end{bmatrix}^{R_3 \to R_3 - R_2} \\ \sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{5}{6} & \frac{3}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{6} & -\frac{3}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{6} & -\frac{3}{2} \\ 0 & 0 & \frac{4}{6} & 0 \\ 0 & 0 & 0 & k-3 \end{bmatrix}^{R_4 \to R_4 + R_3} \\ \sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{5}{6} & \frac{3}{2} \\ 0 & 0 & \frac{4}{6} & 0 \\ 0 & 0 & 0 & k-3 \end{bmatrix}^{R_4 \to R_4 + R_3} \\ = B$$

Given r(A) = 3. So, the number of non-zero rows of B should be 3.

 $\therefore k - 3 = 0 \Rightarrow k = 3$

EXERCISE

Find the rank of the following matrices reducing to echelon form

1.
$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$
2.
$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$
3.
$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$
4.
$$\begin{bmatrix} 4 & 3 & 0 & 2 \\ 3 & 4 & -1 & 3 \\ -7 & -7 & 1 & 5 \end{bmatrix}$$
5.
$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$
6.
$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ -1 & -1 & -2 & 1 \\ 1 & 2 & 1 & -1 \\ 1 & 3 & 0 & -3 \\ 1 & 1 & 2 & 3 \end{bmatrix}$$
7.
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{bmatrix}$$
7.
$$\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -4 & 6 \end{bmatrix}$$
9.
$$\begin{bmatrix} 3 & 1 & -5 & -1 \\ 1 & -2 & 1 & -5 \\ 1 & 5 & -7 & 2 \end{bmatrix}$$
10. Find the rank of the matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 9 \\ 1 & 3 \end{bmatrix}$
11. Find the rank of the matrix
$$\begin{bmatrix} -2 & -1 & -1 \\ 12 & 8 \\ 10 & 5 \end{bmatrix}$$

e matrix $A = \begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{bmatrix}$, by reducing to an echelon matrix e matrix $\begin{bmatrix} -2 & -1 & -1 \\ 12 & 8 & 6 \\ 10 & 5 & 6 \end{bmatrix}$

12. Reduce the matrix
$$\begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$
 to normal form and hence find the rank
13. Find the values of k if the rank of $\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$ is 3.
14. Find the values of a and b if the matrix $\begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & -1 & 2 & 4 \\ 7 & -1 & a & b \end{bmatrix}$ is of rank 2.
15. Find the values of a and b if the matrix $\begin{bmatrix} 1 & -2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & a & b \end{bmatrix}$ is of rank 2.
16. Reduce to normal form and find the rank of $\begin{bmatrix} 1 & -1 & 2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 1 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix}$.
17. Reduce to normal form and find the rank of $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 3 & 1 & 1 & 3 \end{bmatrix}$.
[1 1 2]

18. If $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$ then find non-singular matrices P and Q such that PAQ is in

normal form and find its rank.

19. If A is a non-zero 3×1 matrix and B is a non-zero 1×3 matrix , then the rank of AB is:

- (a) 0
- (b) 1
- (c) 2
- (d) 3

20. Matrix

 $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

(a)	An identity matrix	(b)A scalar matrix	(c)In normal form	(d)In	echelon
-----	--------------------	--------------------	-------------------	-------	---------

form

Answers

1. 3 2 2. 3. 3 4. 2 5. 3 6. 3 7. 3 8. 3 3 9. 2 10. 3 11. 12. 3 13. 2 14. 4,18 4,6 15. 16. $[I_4, 0], rank = 4$ $[I_3, 0], rank = 3$ 17. $P = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \text{rank} = 2$ 18. (b) 19. 20. (d)

CHAPTER-4

SOLUTIONS OF SYSTEM OF LINEAR EQUATIONS

4.1 Matrix representation of Linear equations

Consider a system of m linear equations in n unknowns

$$\begin{array}{c} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_1xx_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m \end{array} \right\} \dots (1)$$

In matrix form, we can write the system of equations (1) as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$
$$A X = B$$

where A , B , X are respectively called the coefficient matrix , requirement vector and the solution vector .

4.2 Non- Homogeneous and Homogeneous Systems of Linear Equations -

The system of equations given by (1) is said to be the system of non-homogeneous linear equations if at least onebi $\neq 0$ i.e., $B \neq O$ (*nul matrix*) and it is called homogeneous if each $b_i = 0$, thus matrix form of homogeneous linear equations is AX = 0.

A Consistent and Inconsistent system A system of equations is called consistent if it has at least one solution otherwise it is called inconsistent. A consistent system has either a unique solution or infinitely many solutions. A homogeneous system is always consistent.

Methods to solve simultaneous linear equations -

The following methods are useful to solve linear equations

- 1. Matrix Inversion method (or using of adjoint of the coefficient matrix)
- 2. Cramer's rule (or using of determinant)
- 3. Gauss elimination method