

Process and Threads are two basic units of Java
program execution.

• Process: A process is a self contained execution
environment and it can be seen as a program or
application.

• Thread: It can be called lightweight process

• Thread requires less resources to create and exists
in the process

• Thread shares the same address space and process
resources

Multithreading in java is a process of executing multiple processes

simultaneously •

A program is divided into two or more subprograms, which can be

implemented at the same time in parallel.

• Multiprocessing and multithreading, both are used to achieve

multitasking.

• Java Multithreading is mostly used in games, animation etc.

 It doesn't block the user

 Can perform many operations together so it saves time.

 Threads are independent so it doesn't affect other threads

• Threads are implemented in the form of objects.

• The run() and start() are two inbuilt methods which helps to

thread implementation

• The run() method is the heart and soul of any thread

– It makes up the entire body of a thread

• The run() method can be initiating with the help of start() method.

By Extending Thread class By implementing Runnable interface

class Multi extends Thread

{

public void run() // run() method declared

{ System.out.println("thread is running...");

}

public static void main(String args[]) {

Multi t1=new Multi();

t1.start(); } }

Output: thread is running…

class Multi3 implements Runnable

{

public void run()

{

System.out.println("thread is running..."); }

public static void main(String args[]) {

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1); t1.start(); } }

Output: thread is running…

 -The thread is born and is said to be in newborn state. The thread is not yet

scheduled for running. At this state, we can do only one of the following: • Schedule it for running

using start() method. • Kill it using stop() method.

The thread is ready for execution Waiting for the availability of the processor.

The thread has joined the queue

– The processor has given its time to the thread for its execution. • The thread runs

until it gives up control on its own or taken over by other threads.

 • A thread is prevented to entering into the runnable and the running state. • This

happens when the thread is suspended, sleeping, or waiting in order to satisfy certain requirements. •

A blocked thread is considered "not runnable" but not dead and therefore fully qualified to run again.

This state is achieved when we Invoke suspend() or sleep() or wait() methods.

 • Every thread has a life cycle.A running thread ends its life when it has completed

executing its run() method•A thread can be killed in born, or in running, or even in "not runnable"

(blocked) condition.•This state is achieved when we invoke stop() method or the thread completes it

execution.

• Each thread is assigned a priority, which

affects the order in which it is scheduled for

running.

• Java permits us to set the priority of a thread

using the setPriority() method as follows:

ThreadName.setPriority(int Number);

Generally threads use their own data and

methods provided inside their run()

methods.

• But if we wish to use data and methods

outside the thread’s run() method, they may

compete for the same resources and may

lead to serious problems.

• Java enables us to overcome this problem

using a technique known as

Synchronization.

For ex.: One thread may try to read a record

from a file while another is still writing to

the same file.

Deadlock describes a situation where two or more

threads are blocked forever, waiting for each

other.

• when two or more threads are waiting to gain

control on a resource.

For example, assume that the thread A must

access Method1 before it can release Method2,

but the thread B cannot release Method1 until it

gets holds of Method2.

