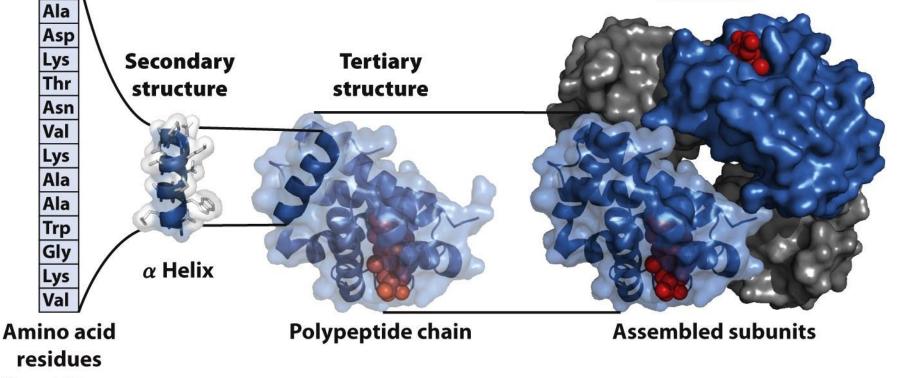
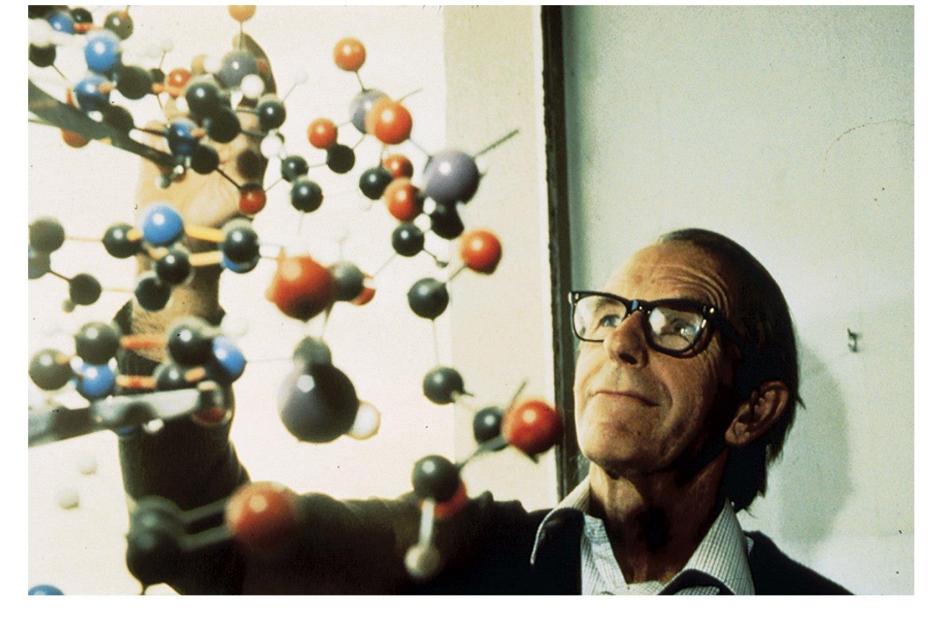
Protein Sequencing

Primary Structure of Proteins

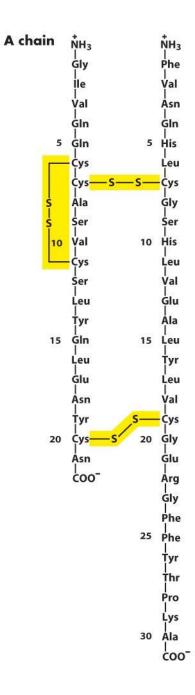

Dr Shilpa D Kaistha Department of Life Sciences & Biotechnology School of Science CSJM University Kanpur

Levels of Protein Structure


Primary structure

Pro

Figure 3-23 *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

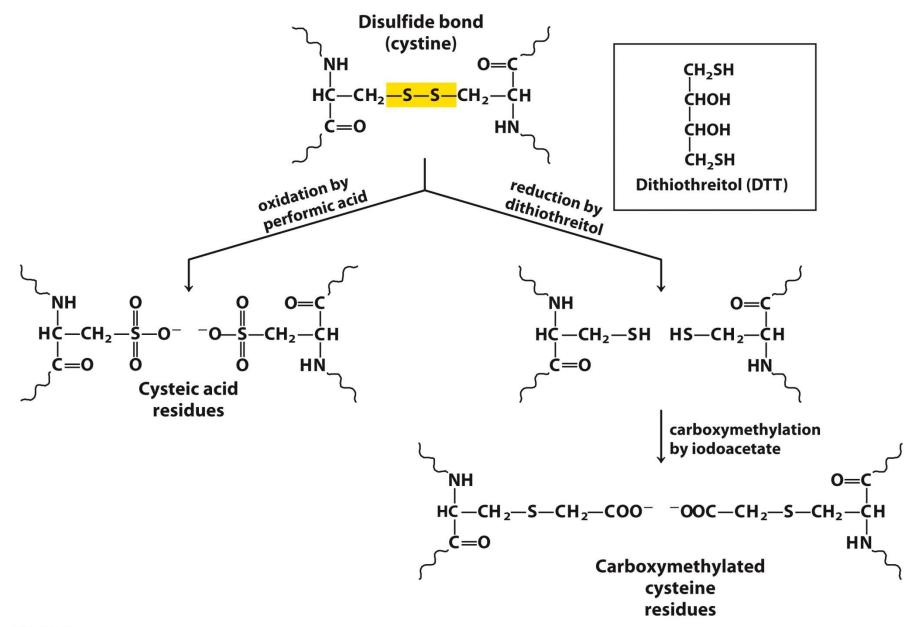


Fredrick Sanger – developed first N-terminal determination and early sequencing methods

Protein Sequencing

- It is essential to further biochemical analysis that we know the sequence of the protein we are studying
- Edman Degradation (Classical method)
 - Successive rounds of N-terminal modification, cleavage, and identification
 - Can be used to identify protein with known sequence
- Mass Spectrometry (Modern method)
 - MALDI MS and ESI MS can precisely identify the mass of a peptide, and thus the amino acid sequence
 - Can be used to determine post-translational modifications.
 - Actual sequence can also be determined from DNA sequence
- Bioinformatics

Insulin – the First Protein Sequenced



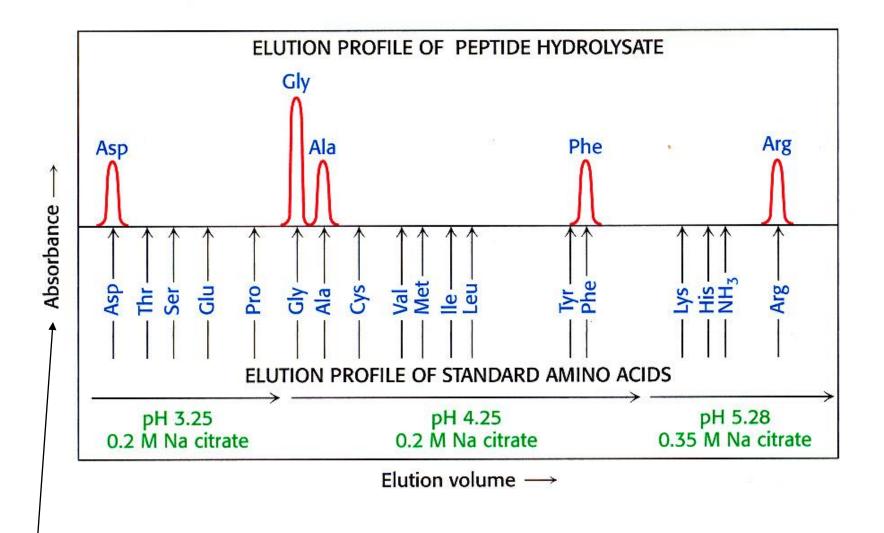
B chain

Once an pure protein is obtained, then....

What needs to be done ?

R-S-S-R

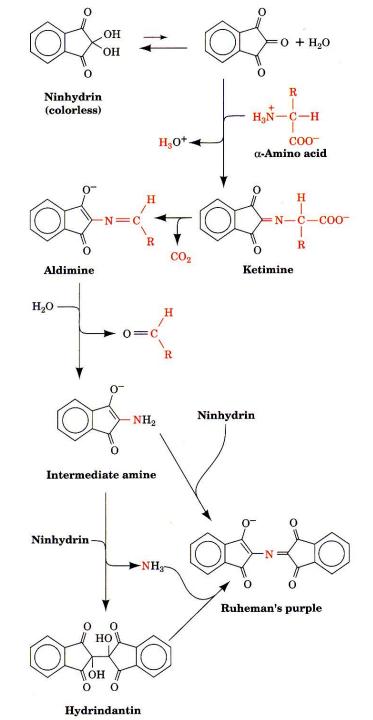
Acid Hydrolysis of Proteins


6 N HCl for several hours,100-105°C,to hydrolyze Peptide bonds Four Problems to Deal With:

- 1. Destroys W.
- 2. Partially (slowly) destroys S and T.
- 3. Converts $N \rightarrow D + NH_4^+$, and $Q \rightarrow E + NH_4^+$.
- 4. Slowly hydrolyzes peptide bonds between vicinal ile, leu, and val.

Dealt with by:

- 1. KOH hydrolysis to determine W.
- 2. HCI hydrolysis over 2 hr, 4hr, 6hr....for S, T, I, L, V.
- 3. Measure NH_4^+ to determine amount of $N+Q \rightarrow D + E$.

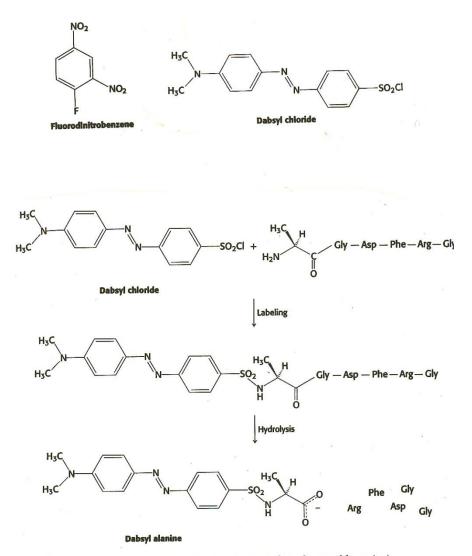

Amino Acid Analysis of AGDFRG

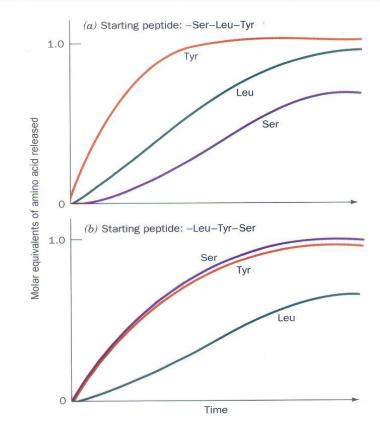
Based on Ninhydrin Reaction

Amino Acid Analysis of Acid Hydrolysate

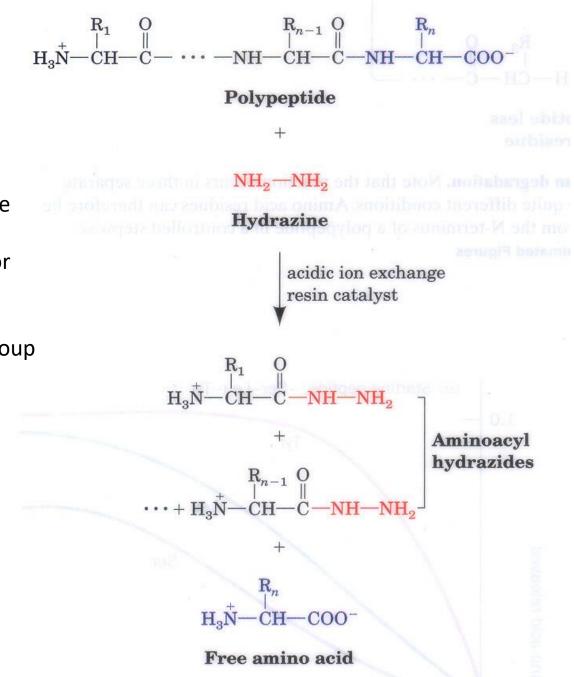
- HPLC using ion exchange or other chromatography all automated equipment.
- Amino acids, as they come off the column, reacted with **ninhydrin.**

N-terminal Reagents



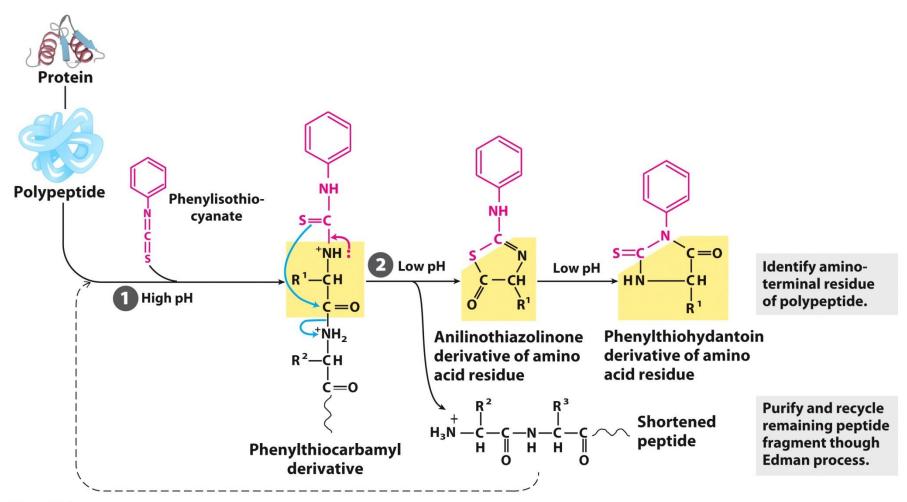

FIGURE 4.20 Determination of the amino-terminal residue of a peptide. Dabsyl chloride labels the peptide, which is then hydrolyzed with the use of hydrochloric acid. The dabsyl-amino acid (dabsyl-alanine in this example) is identified by its chromatographic characteristics.

C terminal Carboxypeptidases


Table 7-1 Specificities of Various Exopeptidases

Source	Specificity ^a				
Bovine pancreas	$R_n \neq Arg, Lys, Pro; R_{n-1} \neq Pro$				
Bovine pancreas	$\mathbf{R}_n \neq \operatorname{Arg}, \operatorname{Lys}, \mathbf{R}_{n-1} \neq \operatorname{Pro}$				
Citrus leaves	All free C-terminal residues; pH optimum $= 3.5$				
Yeast	All free C-terminal residues, but slowly with $R_n = Gly$				
Porcine kidney	$R_1 \neq Pro$				
Porcine kidney	All free N-terminal residues				
	Bovine pancreas Bovine pancreas Citrus leaves Yeast Porcine kidney				

 ${}^{a}\mathbf{R}_{1}$ = the N-terminal residue; \mathbf{R}_{n} = the C-terminal residue.


Hydrazinolysis

Polypeptide + anhyd-Hydrazine at 90°C + mildly acidic ion exchange resin (catalyst) → for 20-100 hrs.

Modifies pepetide carboxyl group to form acyl hydrazide

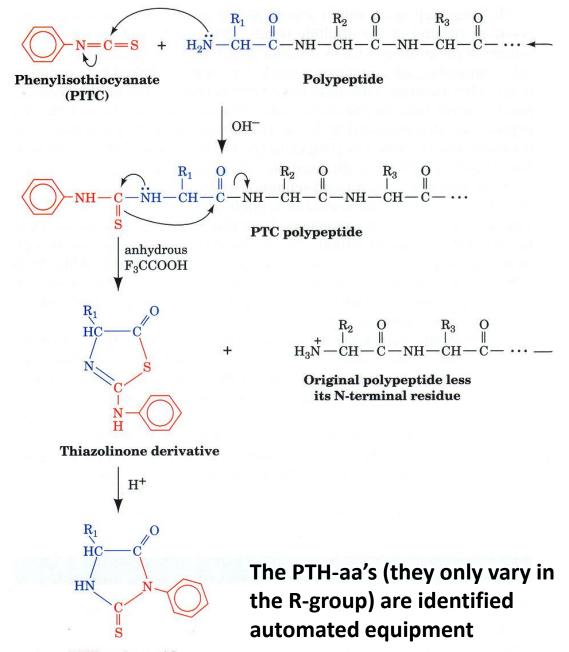

Edman Degradation

Figure 3-27

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

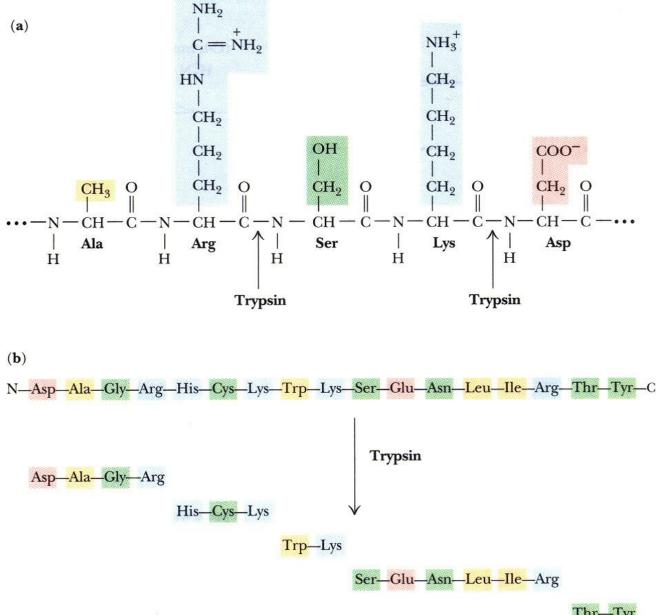
Edman Degradation = Amino Acid Sequencing

PTH-amino acid

Protein Fragmentation Methods

TABLE 3-6	The Specificity of Some Common Methods for Fragmenting Polypeptide Chains
-----------	---

Reagent (biological source)*	Cleavage points ⁺
Trypsin (bovine pancreas)	Lys, Arg (C)
Submaxillary protease (mouse submaxillary gland)	Arg (C)
Chymotrypsin (bovine pancreas)	Phe, Trp, Tyr (C)
Staphylococcus aureus V8 protease (bacterium S. aureus)	Asp, Glu (C)
Asp-N-protease (bacterium Pseudomonas fragi)	Asp, Glu (N)
Pepsin (porcine stomach)	Leu, Phe, Trp, Tyr (N)
Endoproteinase Lys C (bacterium Lysobacter enzymogenes)	Lys (C)
Cyanogen bromide	Met (C)

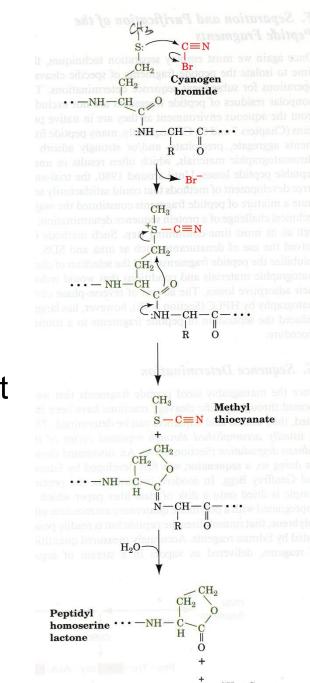

*All reagents except cyanogen bromide are proteases. All are available from commercial sources.

[†]Residues furnishing the primary recognition point for the protease or reagent; peptide bond cleavage occurs on either the carbonyl (C) or the amino (N) side of the indicated amino acid residues.

Table 3-6Lehninger Principles of Biochemistry, Sixth Edition© 2013 W. H. Freeman and Company

You need to know 4 of them: trypsin, chymotrypsin, pepsin and cyanogen bromide fragmentation methods.

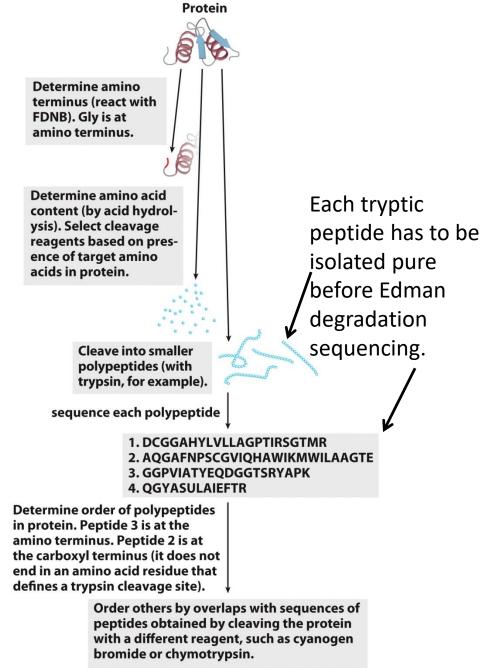
Trypsin Fragmentation



Thr-

CNBr Fragmentation

Cleaves the C-terminal side of Met...


....and converts the Met to Homoserine Lactone

Aminoacyl peptide

R

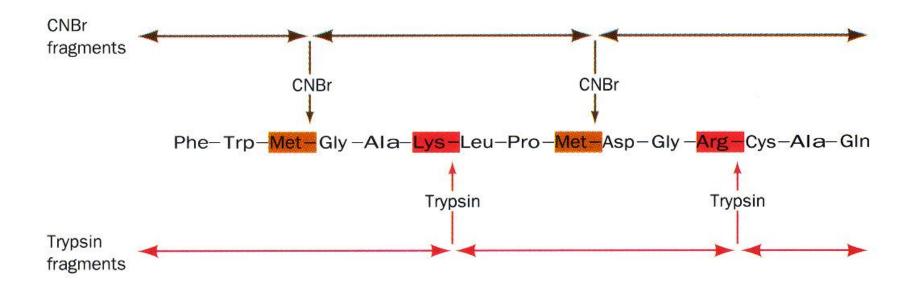

Protein Sequencing Overall Flow

Figure 3-25

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Trypsin and CNBr Fragmentation Each Done Separately

Separation of Protein Fragments The Classic Paper Chromatography + Electrophoresis

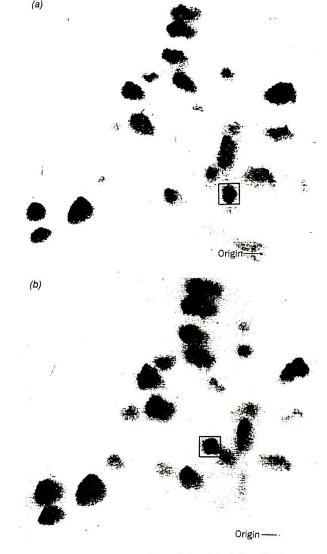
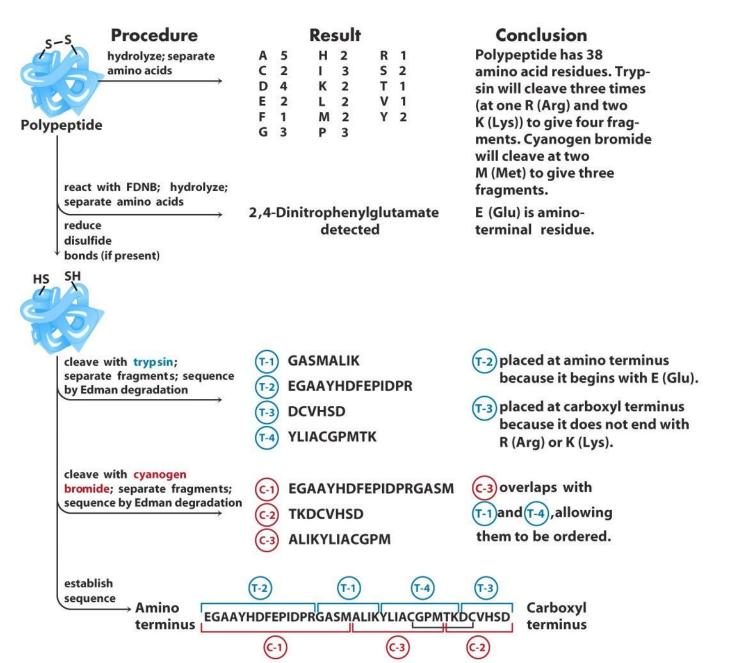
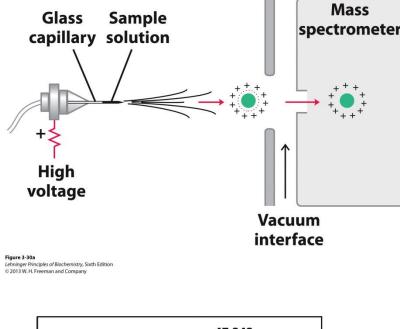
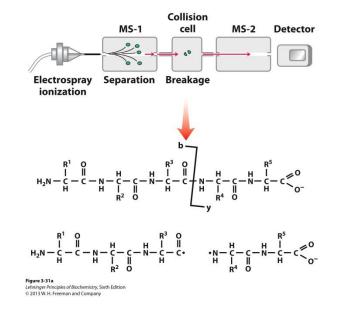



FIGURE 6-10. A comparison of the ninhydrin-stained fingerprints of trypsin-digested (a) hemoglobin A (HbA) and (b) hemoglobin S (HbS). The peptides that differ in these two forms of hemoglobin are boxed. These peptides constitute the eight N-terminal residues of the β subunit of hemoglobin. Their amino acid sequences are

Hemoglobin A	Val-	His-	Leu-	Thr-	Pro-	Glu-	Glu-	Lys
Hemoglobin S	Val-	His-	Leu-	Thr-	Pro-	Val-	Glu-	Lys
-	β1	2	3	4	5	6	7	8
[Courtesy of Corra Albany.]	ido Bag	glioni,	State	Unive	ersity	of Nev	w Yor	k at


Protein Sequencing: Overlapping Sequences




Protein Sequence from DNA Sequence

Amino acid sequence (protein) Gln – Tyr – Pro – Thr – Ile – Trp DNA sequence (gene)

MS Procedures for Sequence IDs

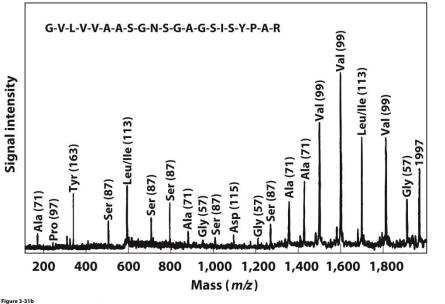
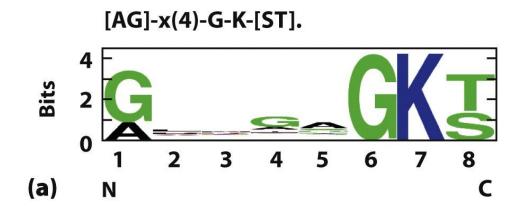
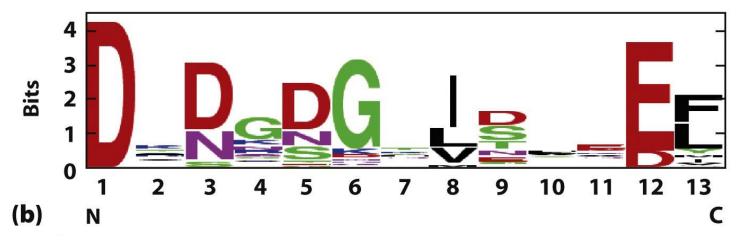
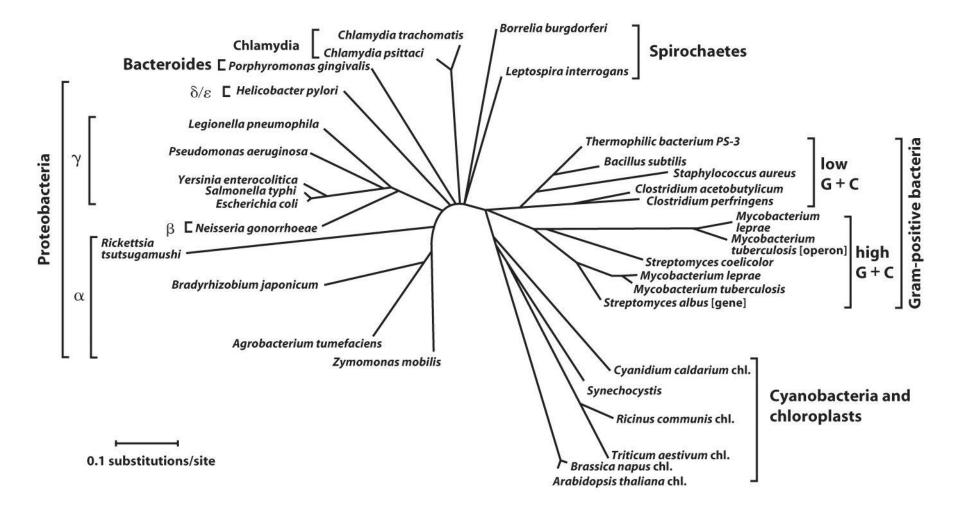




Figure 3-30b Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Consensus Sequences

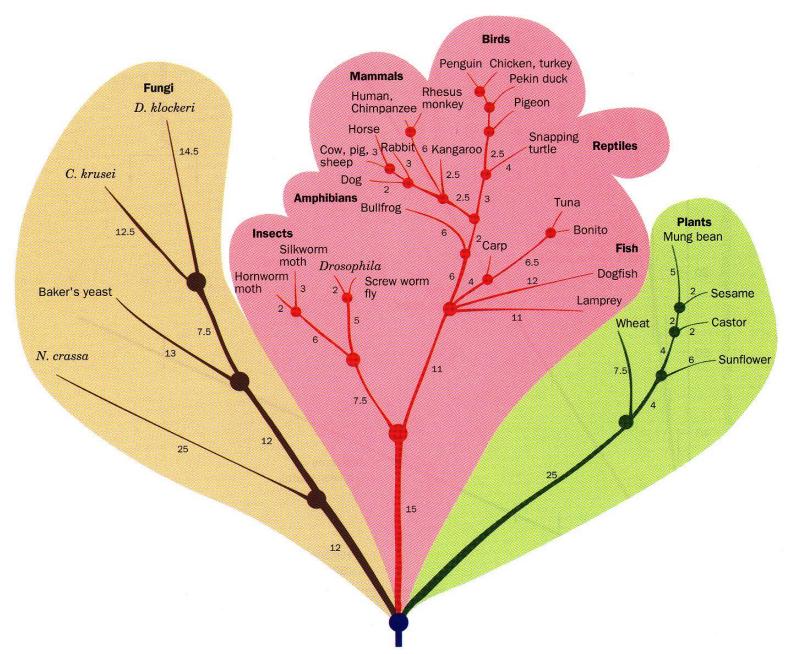
D-{W}-[DNS]-{ILVFYW}-[DENSTG]-[DNQGHRK]-{GP}-[LIVMC]-[DENQSTAGC]-x(2)-[DE]-[LIVMFYW].

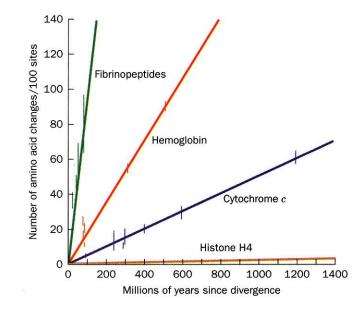

Partial Primary Structure of Elongation Factor Tu Sequences Aligned with Gaps

E. coli TGNRTIAVYDLGGGTFDISIIEIDEVDGEKTFEVLATNGDTHLGGEDFDSRLIHYL DEDQTILLYDLGGGTFDVSILELGDG TFEVRSTAGDNRLGGDDFDQVIIDHL B. subtilis Gap

EF-Tu Signature Sequences

ArchaebacteriaHalobacterium halobium
Sulfolobus solfataricusIGHVDHGKSTMVGRLLYETGSVPEHVIEQH
IGHVDHGKSTLVGRLLMDRGFIDEKTVKEAEukaryotesSaccharomyces cerevisiae
Homo sapiensIGHVDSGKSTTTGHLIYKCGGIDKRTIEKF
IGHVDSGKSTTTGHLIYKCGGIDKRTIEKFGram-positive bacteriumBacillus subtilis
Escherichia coliIGHVDHGKSTMVGRIGHVDHGKSTMVGRITTV


GroEL Phylogeny


Cytochrome C

			T T T T T		r r r r l						
Human	10 GDVEKGKKIF	20 IMKCSOCHTV	30 EKGGKHKTGP		10 10 10 10 10 10 10 10 10 10 10 10 10 1) 60 ANKNKGIIWG) 100 RADLIAYLKK	0 ATNE
Chimpanzee	GDVEKGKKIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT		ANKNKGIIWG	EDTLMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAYLKK	ATNE
Spider monkey	GDVFKGKRIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT		ANKNKGIIWG	EDTLMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAYLKK	ATNE
Macaque	GDVEKGKKIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT		ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAYLKK	ATNE
Cow	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GOAPGFSYTD	ANKNKGITWG	EETLMEYLEN	PKKYIPGTKM	IFAGIKKKGE	REDLIAYLKK	ATNE
Dog	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GOAPGFSYTD	ANKNKGITWG	EETLMEYLEN	PKKYIPGTKM	IFAGIKKTGE	RADLIAYLKK	ATKE
Gray whale	GDVEKGKKIF	VOKCAOCHTV	EKGGKHKTGP	NLHGLFGRKT	GOAVGFSYTD	ANKNKGITWG	EETLMEYLEN	PKKYIPGTKM	I FAGI KKKGE	RADLIAYLKK	ATNE
Horse	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GOAPGFTYTD	ANKNKGITWK	EETLMEYLEN	PKKYIPGTKM	IFAG1KKKTE	REDLIAYLKK	ATNE
Zebra	GDVEKGKKIF	VOKCAOCHTV	EKGGKHKTGP	NLHGLFGRKT		ANKNKGITWK	EETLMEYLEN	PKKYIPGTKM	I FAGIKKKTE	REDLIAYLKK	ATNE
Rabbit	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLF GRKT		ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	I FAGI KKKDE	RADLIAYLKK	ATNE
Kangaroo	GDVEKGKKIF	VOKCAOCHTV	EKGGKHKTGP	NLHGIFGRKT	GOAPGFTYTD	ANKNKGI I WG	EDTLMEYLEN	PKKYIPGTKM	I FAGI KKKGE	RADLIAYLKK	ATNE
Duck	GDVEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGFSYTD	ANKNKG1 TWG	EDTLMEYLEN	PKKYIPGTKM	I FAGI KKK SE	RADLIAYLKD	ATAK
Turkey	GDIEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGFSYTD	ANKNKG1 TWG	EDTLMEYLEN	PKKYIPGTKM	I FAGI KKK SE	RVDLIAYLKD	ATSK
Chicken	GDIEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGFSYTD	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	I FAGIKKKSE	RVDLIAYLKD	ATSK
Pigeon	GD1EKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGFSYTD	ANKNKGITWG	EDTLMEYLEN	PKKY1PGTKM	I FAGIKKKAE	RADLIAYLKQ	ATAK
King penguin	GDIEKGKKIF	VQKCSQCHTV	EKGGKHK TGP	NLHGIFGRKT	GQAEGFSYTD	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	I FAGIKKKSE	RADLIAYLKD	ATSK
Snapping turtle	GDVEKGKKIF	VQKCAQCHTV	EKGGKHK TGP	NLNGL I GRKT	GQAEGFSYTE	ANKNKGITWG	EETLMEYLEN	PKKYIPGTKM	I FAGI KKKAE	RADLIAYLKD	ATSK
Alligator	GDVEKGKKIF	VQKCAQCHTV	EKGGKHK TGP	NLHGL I GRKT	GQAPGFSYTE	ANKNKG I TWG	EETLMEYLEN	PKKYIPGTKM	I FAG1KKKPE	RADLIAYLKE	ATSN
Bull frog	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKV GP	NLYGL I GRKT	GQAAGFSYTD	ANKNKG I TWG	EDTLMEYLEN	PKKYIPGTKM	I FAGI KKKGE	RQDLIAYLKS	ACSK
Tuna	GDVAKGKKTF	VQKCAQCHTV	ENGGKHKVGP	NLWGLF GRKT	GQAEGYSYTD	ANKSKGIVWN	ENTLMEYLEN	PKKYIPGTKM	I FAGI KKKGE	RQDLVAYLKS	ATS
Dogfish	GDVEKGKKVF	VQKCAQCHTV	ENGGKHKTGP	NLSGLFGRKT	GQAQGFSYTD	A <mark>NKSKGITW</mark> Q	QETLRIYLEN	PKKYIPGTKM	I FAGI KKK SE	RQDLIAYLKK	TAAS
Starfish	GQVEKGKKIF	VQRCAQCHTV	EKAGKHKTGP	NLNGILGRKT	GQAAGFSYTD	ANRNKG1 TWK	NETLFEYLEN	PKKYIPGTKM	VFAGLKKQKE	RQDLIAYLEA	ATK
Fruit fly	GDVEKGKKLF	VQRCAQCHTV	EAGGKHKVGP	NLHGLI GRKT	GQAAGFAYTD	ANKAKG I TWN	EDTLFEYLEN	PKKYIPGTKM	I FAGLKKPNE	RGDLIAYLKS	ATK
Silkmoth	GNAENGKKIF	VQRCAQCHTV	EAGGKHKVGP	NLHGFYGRKT	GQAPGFSYSN	ANKAKGITWG	DDTLFEYLEN	PKKYIPGTKM	VFAGLKKANE	RADLIAYLKE	STK
Pumpkin	GNSKAGEKIF	KTKCAQCHTV	DKGAGHKQGP	NLNGLFGRQS	GTTPGYSYSA	ANKNRAVIWE	EKTLYDYLLN	PKKY1PGTKM	VFPGLKKPQD	RADLIAYLKE	ATA
Tomato	GNPKAGEKIF	KTKCAQCHTV	EKGAGHKE GP	NLNGLFGRQS	GTTAGYSY SA	ANKNMAVNWG	ENTLYDYLLN	PKKY1PGTKM	VFPGLKKPQE	RADLIAYLKE	ATA
Arabidopsis	GDAKKGANLF	KTRCAQCHTL	KAGEGNK I GP	ELHGLFGRKT	GSVAGYSYTD	ANKQKGI EWK	DDTLFEYLEN	PKKY1PGTKM	AFGGLKKPKD	RNDLITFLEE	ETK
Mung bean	GNSKSGEKIF	KTKCAQCHTV	DK GAGHKQGP	NLNGL I GRQS	GTTAGYSYST	ANKNMAV I WE	EKTLYDYLLN	PKKYIPGTKM	VFPGLKKPQD	RADLIAYLKE	STA
Wheat	GNPDAGAKIF	KTKCAQCHTV	DAGAGHKQGP	NLHGLF GRQS	GTTAGYSYSA	ANKNKAVEWE	ENTLYDYLLN	PKKYIPGTKM	VFPGLKKPQD	RADLIAYLKK	ATSS
Sunflower	GNPTTGEKIF	KTKCAQCHTV	EKGAGHKQ GP	NLNGLFGRQS	GTTAGYSYSA	GNKNKAVIWE	ENTLYDYLLN	PKKYIPGTKM	VFPGLKKPQE	RADLIAYLKT	STA
Yeast	GSAKKGATLF	KTRCLQCHTV	EKGGPHKVGP	NLHG1FGRHS	GQAEGYSYTD	ANIKKNVLWD	ENNMS EYLTN	PKKYIPGTKM	AFGGLKKEKD	RNDLITYLKK	ACE
Debaryomyces	GSEKKGANLF	KTRCLQCHTV	EKGGPHKVGP	NLHGVVGRTS	GQAQGFSYTD	ANKKKGVEWT	EQDLSDYLEN	PKKYIPGTKM	AFGGLKKAKD	RNDLITYLVK	ATK
Candida	GSEKKGATLF	KTRCLQCHTV	EKGGPHKVGP	NLHGVFGRKS	GLAEGYSYTD	ANKKKGVEWT	EQTMSDYLEN	PKKYIPGTKM	AFGGLKKPKD	RNDLVTYLKK	ATS
Aspergillus	GDAK - GAKLF	QTRCAQCHTV	EAGGPHKVGP	NLHGLF GRKT	GQSEGYAYTD	ANKQAGVTWD	ENTLFSYLEN	PKKFIPGTKM	AFGGLKKGKE	RNDLITYLKE	STA
Rhodomicrobium	GDPVKGEQVF	KQ-CKICHQV	GPTA <mark>KN</mark> GVGP	EQNDVF GQKA	GARPGFNY SD	AMKNSGLTWD	EATLDKYLEN	PKAVVPGTKM	VFVGLKNPQD	RADVIAYLKQ	LSGK
Nitrobacter	GDVEAGKAAF	NK - CKACHE I	GESAKNKVGP	ELDGLDGRHS	GAVEGYAY SP	ANKA SGI TWT	EAEFKEYIKD	PKAKVPGTKM	VFAGIKKDSE	LDNLWAYVSQ	FDKD
Agrobacterium	GDVAKGEAAF	KR - CSACHAI	GEGAKNKVGP	QLNGIIGRTA	GGDPDYNY SN	AMKKAGLVWT	PQELRDFLSA	PKKKIPGNKM	ALAGISKPEE	LDNLIAYL I F	SASSK
Rhodopila	GDPVEGKHLF	HTICLICHT-	DIKGRNKVGP	SLYGVVGRHS	GIEPGYNY SE	ANIKSGIVWT	PDVLFKYIEH	PQKIVPGTKM	GYPG-QPDQK	RADIIAYLET	LK

Cytochrome C Phyolgeny

Proteins Evolve at Different Rates

- 18. Sequence of Leucine Enkephalin, a brain opioid peptide.
- Complete hydrolysis by 6M HCl at 110°C followed by amino acid analysis indicated the presence of G, L, F, and Y in a 2:1:1:1 molar ratio.

This means the peptide could be 2:1:1:1, or 4:2:2:2, or....

18. Sequence of Leucine Enkephalin, a brain opioid peptide.

- a. Complete hydrolysis by 6M HCl at 110°C followed by amino acid analysis indicated the presence of G, L, F, and Y in a 2:1:1:1 molar ratio.
- b. Treatment of the peptide with 1-fluoro-2,4, dinitrobenzene followed by complete hydrolysis and chromatography indicated the presence of 2,4-dinitrophenyl derivative of tyrosine. No free tyrosine could be found.

What does this tell you?

18. Sequence of Leucine Enkephalin, a brain opioid peptide.

- a. Complete hydrolysis by 6M HCl at 110°C followed by amino acid analysis indicated the presence of G, L, F, and Y in a 2:1:1:1 molar ratio.
- b. Treatment of the peptide with 1-fluoro-2,4, dinitrobenzene followed by complete hydrolysis and chromatography indicated the presence of 2,4-dinitrophenyl derivative of tyrosine. No free tyrosine could be found.

What does this tell you?

Y is the N-terminal amino acid: so the peptide is Y _ _ _

18. Sequence of Leucine Enkephalin, a brain opioid peptide.

- a. Complete hydrolysis by 6M HCl at 110°C followed by amino acid analysis indicated the presence of G, L, F, and Y in a 2:1:1:1 molar ratio.
- b. Treatment of the peptide with 1-fluoro-2,4, dinitrobenzene followed by complete hydrolysis and chromatography indicated the presence of 2,4-dinitrophenyl derivative of tyrosine. No free tyrosine could be found.
 the peptide is Y _____

c. Complete digestion of the peptide with chymotrypsin followed by chromatography yielded free tyrosine and leucine with a tripeptide containing Phe and Gly in a 1:2 ratio.

18. Sequence of Leucine Enkephalin, a brain opioid peptide.

- a. Complete hydrolysis by 6M HCl at 110°C followed by amino acid analysis indicated the presence of G, L, F, and Y in a 2:1:1:1 molar ratio.
- b. Treatment of the peptide with 1-fluoro-2,4, dinitrobenzene followed by complete hydrolysis and chromatography indicated the presence of 2,4-dinitrophenyl derivative of tyrosine. No free tyrosine could be found.
 the peptide is Y _____
- c. Complete digestion of the peptide with chymotrypsin followed by chromatography yielded free tyrosine and leucine with a tripeptide containing Phe and Gly in a 1:2 ratio.
- so... it is YGGFL