
1

Using Buffered Reader Class

Using Scanner Class

Using Console Class

Using Command line argument

2

 This is the Java classical method to take
input, Introduced in JDK1.0.

 This method is used by wrapping the
System.in (standard input stream) in an
InputStreamReader which is wrapped in a
BufferedReader, we can read input from the
user in the command line.

 The input is buffered for efficient reading.

3

// Java program to demonstrate Buffered Reader
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Test {

public static void main(String[] args)
throws IOException

{
// Enter data using BufferReader
BufferedReader reader = new BufferedReader(

new InputStreamReader(System.in));

// Reading data using readLine
String name = reader.readLine();

// Printing the read line
System.out.println(name);

}
}
Input :
yrte3332

Output :
-> yrte3332

To read other types, we use functions like
Integer.parseInt(), Double.parseDouble(). To
read multiple values, we use split().

4

 This is probably the most preferred method to take input.
The main purpose of the Scanner class is to parse
primitive types and strings using regular expressions,
however, it is also can be used to read input from the user
in the command line.

 Convenient methods for parsing primitives (nextInt(),
nextFloat(), …) from the tokenized input.

 Regular expressions can be used to find tokens.

 The reading methods are not synchronized.

5

// Java program to demonstrate working of Scanner in Java
import java.util.Scanner;

class GetInputFromUser {
public static void main(String args[])
{

// Using Scanner for Getting Input from User
Scanner in = new Scanner(System.in);

String s = in.nextLine();// for string
System.out.println("You entered string " + s);

int a = in.nextInt(); // for integer
System.out.println("You entered integer " + a);

float b = in.nextFloat();// for float
System.out.println("You entered float " + b);

// closing scanner
in.close();

}
}
Input :
Java_rocks
12

3.4

#type
nextBoolean() Reads a boolean
nextByte() Reads a byte value
nextDouble() Reads a double
nextFloat() Reads a float value
nextInt() Reads a int value
nextLine() Reads a String
nextLong() Reads a long value
nextShort()Reads a short value

Output :
You entered string Java_rocks
You entered integer 12
You entered float 3.46

 It has been becoming a preferred way for reading user’s input
from the command line. In addition, it can be used for reading
password-like input without echoing the characters entered by
the user; the format string syntax can also be used (like
System.out.printf()).

 ADVANTAGES

• Reading password without echoing the entered characters.

• Reading methods are synchronized.

• Format string syntax can be used.

• Does not work in non-interactive environment (such as in an
IDE).

7

// Java program to demonstrate working of System.console()
// Note that this program does not work on IDEs as
// System.console() may require console
public class Sample {

public static void main(String[] args)
{
// Using Console to input data from user
String name = System.console().readLine();

System.out.println("You entered string " + name);
}

}
Input :
Uiet_kanpur
Output :
You entered string Uiet_kanpur

8

 Most used user input for competitive coding. The command-line
arguments are stored in the String format.

 The parseInt method of the Integer class converts string
argument into Integer. Similarly, for float and others during
execution.

 The usage of args[] comes into existence in this input form. The
passing of information takes place during the program run. The
command line is given to args[]. These programs have to be run
on cmd.

9

// Program to check for command line arguments
class Hello {

public static void main(String[] args)
{

// check if length of args array is
// greater than 0
if (args.length > 0) {

System.out.println(
"The command line arguments are:");

// iterating the args array and printing
// the command line arguments
for (String val : args)

System.out.println(val);
}
else

System.out.println("No command line "+"arguments found.");
}

}
Command Line Arguments:

javac GFG1.java
java Main Hello World

Output:

The command line arguments are:
Hello World

10

