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McCulloch—Pitts Neuron

In 1943, Warren McCulloch and Walter Pitts introduced one of the first artificial neurons.
The main feature of their neuron model is that a weighted sum of input signals is compared to a
threshold to determine the neuron output.

When the sum is greater than or equal to the threshold, the output is 1. When the sum is less than
the threshold, the output is O.
v

) - C in,
» ”{iz,,w"m“;& =

oudpat =




Perceptron Classifier

The perceptron is a simplified representation of the biological neuron in
the brain.

It is also known as theVSingle Layer Perceptron(SLP).

The perceptron model was proposed by McCulloch & Pitts in 1943.

The perceptron is the simplest form of a neural network for patterns that
are{linearly separablgéﬂ

The structure of a perceptron consists of a single neuron with adjustable
synaptic weights and bias.

The weights are adJuspgd during the training phase, as training data is
presented to it.

The model consists of a linear combiner followed by al%ard limiter
(performing the signum function). —

Also incorporates an externally applied bias.

Output is +1 (if hard limiter output is positive) and —1 (if hard limiter
output 1is negative). —




y = signum(v)
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: Lineraly Separable KOk \
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Perceptrons can only classify linearly separable cases.
Lets say we want to classify a set of data into either Group A (G, ) or Group B (G; ).

If G, and G, are linearly separable, there exists a separating hyperplane between the two groups
which is linear in nature. ®

In simple terms, there is a straight line dividing between G, and G; . A
Consider the cases of AND and OR:

’
N 1 & ® Glﬁ
A N

0 1 0 G, o L ﬁf;m
1 0 0 AND
1 1 1 G
6@ 5 1
0 0 0 G, 1¢ ®
0 1 1
1 0 1 — Gg » o >
1 1 1_ - / °

OR



e e
(XOR) < ——k&,(am

0

R O = O
o = = O

1
e

—XOR case is

/ "
nonlinearl

separable!




Perceptron Architecture

First, consider the network weight matrix:
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Now we can partition the weight matrix: w = [2W
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the ith element of the network output vector as
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Single—Neuron Perceptron gy vo;t, 1P
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Let’ s consider a two—input perceptron with one neuron ?
(

Inputs Two-Input Neuron
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The output of this network is determined by

v
a = hardlim(n) = hardlim(Wp + b)
T A <

= hardlim(lep +b) = hardlim(w, \py+wy ,p, + D)




Single—Neuron Cont..

Decision Boundary: The decision boundary is determined by the input vectors for which the net input
1S zero: - y / v &-_)‘) +12—_—_ @)

n= wp+b-= W},1P1+W1,2P}2+f2 = Q.

- L—— v

let’ s assign the following values for the weights and bias: ' By W, =1 W, .= = -
wip=1Lw,=1,b=-1 «&v?.-‘-?,.P?:D
The decision boundary is then W, P, +b = [

T _ .,b‘b\)“
n= wWp+b=w +w +b=p, +p,—1 =0 @
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To find the p, intercept set p,=0:
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Single—Neuron Cont..

_ D
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e The boundary is always orthogonal to ;W \\\ s
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e any vector in the shaded region, will have an inner product greater than —b , and vectors
in the unshaded region will have inner products less than —b.

e the weight vector will always point toward the region where the neuron output is 1
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» Supervised Learning W
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Generate a training pair or pattern:
- an input N=fiw il /
St— a target output y,, .., (known/given) v \

Then, present the network with x and allow it to generate an \/
output y

Compare y with y,, ., to compute the error. lyasn 2t e
Adjust weights, l‘i tolreduce error 40 et
Repeat 2-4 multiple times oY
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For simple Perceptrons performing classification, we have seen that the
decision boundaries are hyperplanes, and we can think of learning as the

process of shifting around the hyperplanes until each training pattern is
classified correctly.v//

Somehow, we need to formalise that process of “shifting around’ into a
systematic algorithm that can easily be implemented on a computer.

The “shifting around’ can conveniently be split up into a number of
small steps.

I[f the network weights at time t are L@J(f) , then the shifting process
corresponds to moving them by an amount;ZXWw{%) so that at time t+1 we have
weights Y, - w | b~

i@;;;;:Z?;-+AMA@L;§%€:UL/////

[t is convenient to treat the thresholds as weights, as discussed
previously, so we don t need separate equations for them.




Formulating the Weight Changes

e Suppose the target output of unit J is targ and the actual output is
out =sgn (), in; w, % where in; are the activations of the previous layer of
neurons e. g t e network 1nputs) Then we can Jjust go through all the
possibilities to work out an appropriate set of small weight changes, and
put them into a common form:

If out, = targ; do nothing Note targ;— out;=0 If out;=0 and  rarg; =1 Note targ; —out; =1
- T then 2 in;w; is too small
5 ) y
first when in; =1 increase wy;
If out,=1 and  targ; =0 Note targ;, — out; = -1 SO w; = w;+ 1N =w;+nin,
then 2 in; w; is too large and when in,=0 w; doesn’t matter
first when in; =1 decrease w;; SO wi = w;—0 =w;+ nin,
SO Wy, = Wwy—1n =w;—1in SO wW; 2w+ N
and when in,=0 w,;. doesn’t matter . .
: y It has become clear that each case can be written in the form:
SO w; = w;—0 =w;—1nin,
: w; —w; + N (targ; — out;) in;
SO Wy w1 in;

Aw; = 1 (targ; — out,) in,

e This weight update equation is called the Perceptron Learning Rule. The positive
parameter 7 1is called the Jlearning rate or step size — it determines how smoothly we
shift the decision boundaries.



Convergence of Perceptron Learning

The weight changes Awij need to be applied repeatedly — for each weight
wij in the network, and for each training pattern in the training set. One
pass through all the weights for the whole training set is called one
epoch of training.

Eventually, usually after many epochs, when all the network outputs match
the targets for all the training patterns, all the Awhjwill be zero and
the process of training will cease. We then say that the training process
has converged to a solution.

It can be shown that if there does exist a possible set of weights for a
Perceptron which solves the given problem correctly, then the Perceptron
Learning Rule will find them in a finite number of iterations

Moreover, it can be shown that if a problem is linearly separable, then
the Perceptron Learning Rule will find a set of weights in a finite number
of iterations that solves the problem correctly ‘



‘Pepegereon LG AENING MAD nput X, E
J
-\'/1)3—[0]4_ b:—£b]
X E

hutiadi zo m}K\AfA«biM Td‘ 2 &M\o(béa: w (o) & b(o)y & @
g D

[1]
2] B w\umwnfr pou/s (X5 B Y Ql%' j
avwmp %: karwmt\/_\)_Z(_-P'B) Lzyt v
achumk
= Wuﬂ W;W* ‘LM&Y
C:t*a'"\a'—b»j«f—%¢@
- — 7
{ ¢€=° .D e MM\ w(o-—-wcomwe;&
= § ‘W‘ffu"“ 4 b(1) = bl)+7 *¢ o
W z\,\)alal _’_,),l*e*_x L Z \t‘ —) exnss
U haod wed -
et e e | o Lo wiep ot
(3] Repect il Gonhirgn k fbm o !

15



—l
P3| -2
RN
fS’Gfel ‘L%

i = haond b (wco)T X +b )

=Wb'm([0 0]12;]-#9) é@_t?;o

= hardbim (o)
= Epoc,k p
~o0o-1=-! e;,——?fs“?‘)q

b @ L
e = ‘(')l ' JER \0? {)l w7 (Iz)\,&frd/{fm (h):' | / 7\>/D
up datp e Weiglef TEI b b o, n<o

e e [2] ©

- [:] ,bg)=bld T ) xe

b()= —| 16



17



18



19



20



21



22



23



24



25



26



27



28



29



30



Vonepiron lsrming Myo 5
) ‘tnihadize paglli & Blas ot eomvamdom  W(O) b (0)

>t
_ it Y o
. . Jargit — actial ) < J — J)e(® a)=¢
— Ltomfui'b 21128 ( o .\){ . % m;j:u?%j (
\ _=' — 2
— fe u,Pa.LmLﬁ'm 0 g k4 Biag )
el Wou"_‘_ ¥ @ *+ X = L\ICheu))z.\/\JCOLdJ ‘I"'rl‘*e X
C b(_nw)z\ﬁbb!dj—x-v\;.g

NgO old. /
= C
b b ' @ MMMJ/

@) Rep ikl onvegece (= O)
— \
/~&, Rast o V\MQSW
W 4 b

31



L% Pevcrss bvon Lo Ass uma — v , {bg=0 |
B e;ibPK‘o] L [ - 7'1 i\/w-[‘_i} LB WD
(Di \l\l (0 - O - b=

b (¢)=0,

L

4 /) g
wrx Fb=D b‘f[" ’[-l-‘ o 'r &

tonaph

DRt v frafz]s #i=° ﬁ/T‘* .
o B\NJL'mEWL°)TP,+bCﬁJJ = Mfm[[o o][ i]-l— D] J_ f r 0
adegll M’mLOJ =1 Fe[ Lo

Gledih  evor @= &= = 07l=74
u{)m L\)e;al'rf'gf brag -

w(i)= W)+ M*Q * P —_-.igl..[;z:j,_ L——sz(
b(1)= bco)-“l*e 0 —f= —4

NCi):L:%l b — —>f’3—>ff[
BO')Z—}/ e =

o<




/ Bais -Zj -63:-0 N \

tor T [-—z -L—%,- L mja‘”

: o= handtin (W) 4 66) | 7 ;f-‘j)]if’“-,]
0= Fandlin ([-2-2] 2]~ l) —

o= Dardlin [w()TPz,Jr bl1)]

& = MUM"‘[E- -2:] —Ll Go= Pondlim C_\}) _o O -: —3J v
.= «‘,{Matﬂm[,] L C= 63—@— © -0 = blg)= bB)+1
e= 0 = Neupdi N D -—I-H-/
wW(2) = WCIJ -l-’fL*Q*P WC«3) - W(a) = [_ I}
WQ‘B" WQ)“[ “L] b(2)= b(2)=-4 a»m(wcquﬂn(::)jt_“tb—'/ m—wﬁ
— I [ =0
b(2) = b(y+nre | derli=[71( =t G b-a=0-0 — o

b(2) = b()) = -1 / e Aondlim [WEY' r4+ bGs) ]| 80 Nog updit,

o= 'P/\MDL{'W\( |:) WCSJ—WCQ)_[ 3-]
C-ts-a= {-0= L —)

o newd %wabaa v b 652 ‘dC“)-l O

33



.11rf+.,'b4=’ D\&NO Qossih'q—%.i_\
o omy B2 a=1,8=0 /\% f > I =
w=0 3 N upolaty
o cta-a=l-0= - e /‘7®
W(_é) :chj—[- 'rLkﬂ,*PL ( 3J=W[;)¢
wied= [ =3 b= biz)

b (&)= B(sj—l-'lﬁ-e Thaafrr %aﬁ?/o Fas Cton

b£~43=14,




Example:

©

O
W, 24
NI N




b(1)=bl+1C

i\m'\ﬂ : e

b (>3 LNJ L goarrd 1{p veste o [ 1 B’J
vt [p veckes / eiz[:];bt:’[bo] o - Poodbin (WU) Prt fo(_)_?
T &www L2° ][ ]+ED
a—;MW(V\)COS Fl-klo(y& &
ondtim (1])= T ] oo 18l
e b0 )" H“”H No wpelas



forbporek 7 2], bs2[ 4]

e= (1), e

Wiz)=W () + fl&??’ -«-i N

b ()= bI+1¢

-]

fee te= (31 *+=E:1

Ps £
w(8) =W+

Ly =1

-2

Pr

o

|

P
k [ = S-'\'ofic\ﬂ Cm

'y

) = W () =wis) =wl4a) =w(s)

=]

W (&)= b(# =bK) =pE) =5

(A-)z:- [oB) /

w(to) = - \

W (o) = _

et o~ alyo Pas
CUA\AU“V-A"

37



38



39



40



41



42



43



44



