
Artificial Neural Networks
Topic-06

Unsupervised Learning

07/12/2021 footer

Unsupervised Learning

 There exist problems where the training data consist of only input
patterns and the desired output pairs are not available.

 Where the only information is provided by a set of input patterns.

 In these cases the relevant information has to be found within the
redundant training samples .

17/12/2021 footer

Example Problems
 Clustering: Here the input data are to be grouped in to clusters and the data

processing system has to find these inherent clusters pertaining to the input
data. The output of the system should give the cluster label of the input
pattern (discrete output)

 Vector Quantization: This problem occurs when a continuous space has to
be discretized. The input of the system is the n-dimensional vector x. The
output is a discrete representation of the input space, The system has to find
optimal discretization of the input space.

 Dimensionality Reduction: The input data are grouped in a subspace which
has lower dimensionality than the dimensionality of the data. The system has
to learn an optimal mapping such that most of the variance in the input data
is preserved in the output data.

 Feature Extraction: The system has to extract features from the input signal.
This often means a dimensionality reduction as described above.

27/12/2021 footer

Neuro-Computational Solution
There is a special classes of ANN known as are self organizing

networks that are suitable for solving these kind of problems. In these
networks the training is done without the presence of an external
teacher using unsupervised weight adapting algorithms. These
algorithms are usually based on some form of global competition
between the neurons.

 One of the most basic schemes is competitive learning as
proposed by Rumelhart and Zipser

 A very similar network but with different emergent properties
is the topology conserving map devised by Kohonen

 Other self-organising networks are ART proposed by Carpenter
and Grossberg, and Fukushima’s cognitron by Fukushima.

37/12/2021 footer

Competitive Learning Network

In competitive learning network all the output neurons are

connected to every input neuron with associated interconnection
weights. When an input pattern is presented , the output neurons
of the network compete among themselves to be activated with the
result only one output neuron is ON at any one time. The output
neuron that wins the competition is called winner-takes all-neuron
or simply a winning neuron.

There are two methods for the determination of the winner.

47/12/2021 footer

Winner selection Using Dot Product

Here both the input vectors and weight vectors are normalized to
unit length.

Step-1: Each output unit calculates its activation according to the
dot product of input and weight vector. (this nothing but
the weighted sum)

Step-2: The output neuron ‘k’ with maximum activation is
selected as a winning neuron.

Step-3: Activation of the output neurons are reset such that the
winning neuron will have the value of +1 and other
neurons will have the value of 0 for the given input.

57/12/2021 footer

Winner Selection Using Euclidean Distance

The dot product method would fail if un-normalised vectors
were to be used.

Naturally one would like to accommodate the algorithm for
un-normalized input data.

For this end winning neuron ‘k’ is selected with its weight
vector closest to the input pattern using the Euclidean distance
measure.

67/12/2021 footer

Self Organizing Map

In a self-organizing map (SOM), the neurons are placed at the

nodes of a lattice that is usually one or two dimensional.

The neurons are selectively tuned to various input patterns.

SOM is characterized by the formation of a topological map of
input patterns in which the spatial location of a neurons in the
lattice are indicative of intrinsic statistical feature contained in the
input pattern. Hence the name self-organizing map.

77/12/2021 footer

Feature Mapping Models
Motivation

The development of self organizing map as neural model
is motivated by distinct feature of the human brain: the brain
is organized in many places in such a way that different
sensory inputs are mapped on to corresponding areas in a
cerebral cortex in a topologically ordered fashion. Thus the
computational map constitutes a basic building block in the
information processing infrastructure of the nervous system.

87/12/2021 footer

Properties of Brain Computational Map

 At each stage of representation each incoming piece of information
is kept in its proper context.

 Neurons dealing with closely related pieces of information are
close together sot hat they can interact via short synaptic
connections.

 The principle of artificial topological map states that “ the spatial
location of an output neuron is topological map corresponds to a
particular domain or feature of data drawn from the input space”.

97/12/2021 footer

Kohonen Feature map
Kohanen’s self-organizing feature map is a two layered

network that can organize a topological map from random starting
point. The resulting map shows the natural relationship among
the pattern that are given to the network. This network combines
the input layer with a competitive layer of processing unit and
trained by unsupervised learning

The Kohonen feature map finds organization of relationship
among patterns.

7/12/2021 footer 10

Basic Structure
 The Kohonen feature map is a two-layered network.

 The first layer of the network is the input layer.

 The second layer is the competitive layer and is organized as two-
dimensional grid

 All connections go from the first layer to the second layer and these two
layers are fully interconnected [each input neuron is connected to all
the neurons in the competitive layer]

 Each interconnection has an associated weight value

 The typical initial weights are set by adding a small random number to
the average entries in the input patterns.

 These weight values get updated during the training of the network.

7/12/2021 footer 11

7/12/2021 footer 12

Training

 When an input pattern is presented, each unit in the first layer
takes on the value of the corresponding entry in the input pattern.
This input pattern is denoted by

E= [e1, e2, . . . , en]

 The weights associated with connections from the input units to
single unit (say ith unit, here we identify each unit in the
competitive layer by a single index, even though there is a two-
dimensional grid of units in this layer) in the competitive layer are
given by

Ui = [ui1, ui2, . . . , uin]

7/12/2021 13

Connections From the Input Vector to Single Unit in the Competitive

Layer

7/12/2021 footer 14

e2 e3 en

ui3 uinui1

e1

ui2

i

Training Steps

The first step is to compute matching value for each unit in the
competitive layer. This value measure the extent to which the
weights each unit match the corresponding values of the input
pattern. The matching value for the unit i is calculated by the
following equation

which is the distance between the vectors E and Ui

7/12/2021 15

() −=−

j

ijji ueUE
2

The unit with lowest matching value(the best match) wins the
competition. Hence the unit with the best match is denoted as unit k
and k is chosen such that

where the minimum is taken over all units i in the competitive
layer.

If two or more units have same matching value then by
convention, the unit with lower index value i is chosen

7/12/2021 16

()i
i

k UEUE −=− min

The next step after identifying the winning unit is to identify the
neighborhood around it. The neighborhood consist of the units that are close
to winner in the competitive layer grid. Here the neighborhood consists of a
set of units that are within a square that is centered around the winning unit
k and denoted by Nk.. The of the neighborhood can vary depending up on the
distance between k to the edge of the neighborhood and denoted by d. The
weights are updated for all the units that are in the neighborhood of the
winning unit Nk. by using the equations

7/12/2021 footer 17

()

 −

=
otherwise

Nodneighborhotheinisiunitifue
u

kijj
ij

0

ij
old
ij

new
ij uuu +=

This adjustment results in the winning unit and its neighbors
having their weights modified , becoming more like input pattern.
Now the winner become more likely to win the competition when
the same or a similar input pattern will be presented subsequently.

Here two parameter need to be specified:

 The value of , the learning rate parameter in the weight
adjustment equation

 The size of the neighborhood Nk

7/12/2021 footer 18

Setting the Value for and Nc
 Initially the learning rate takes relative larger value and being decreased

over the span of many iterations.

 This initial value of is set by choice and is denoted by 0 (the typical
choices are in the range0.2 to 0.5).

 The value of for tth is denoted by t determined by the equation

where t → is the current training iteration

T → is the total number of training iteration to be done,

The value begins with 0 and decreases until it reaches zero

7/12/2021 footer 19

−=

T

t
t 10

 The initial neighborhood width is relatively large, and is decreases over the
progress of the training iterations. The center of the neighborhood is the
winning unit k and at the position (xk , yk). Let d be the distance from k to the
edge of the neighborhood. The neighborhood is then all (x, y) such that

k - d < x< k + d and k - d < y < k+ d

 Sometimes the calculated neighborhood goes outside the grid of units in the
competitive layer; in this case the actual neighborhood will be cut off at the
edge.

 Initially d is assigned with a chosen value denoted by d0 (the typical value for
do can be a half or a third of the width of the competitive layer of processing
units. The value of d will be decreased according to the equation

7/12/2021 footer 20

−=

T

t
dd 10

where t → is the current training iteration and

T → is the total number of training iteration

This process assures a gradual linear decrease in d starting with do and
going down to 1

7/12/2021 footer 21

Summary

1. Locate the unit in the competitive layer whose weights best
match the input pattern.

2. Increase matching at this unit and its neighbors by adjusting
their weights

3. Gradually decrease the size of the neighborhood and the
amount of change to the weights as learning iteration progress

7/12/2021 footer 22

