

BP 605 T. Pharmaceutical Biotechnology (Theory)

Structure of Immunoglobulins

Dr Chandresh Sharma

Assistant Professor

Department of Biotechnology

Chhatrapati Shahu Ji Maharaj University, Kanpur

Overview

Definition and Introduction

Immunoglobulins Structure

Immunoglobulins Function

Immunoglobulins

- **Definition:** Immunoglobulins are glycoprotein molecules **belonging to** γ -globulins class of plasma **proteins** produced in response to a non-self or an altered self immunogen and act as antibodies in humoral adaptive immune response.
- ✓ Immunoglobulins are produced in vertebrates by plasma cells, which are the terminally differentiated B lymphocytes

Basic Immunoglobulin Structure

✓ γ-globulin

- ✓ glycoprotein
- ✓ heterodimer
- ✓ 'Y' shaped molecule
- ✓ coded by immunoglobulin supergene family
- ✓ Secreted antibodies are the major effector molecules of humoral immunity

Immunoglobulin Structure – a monomer (H2L2)

- ✓ 2 Heavy & 2 Light chains
- ✓ Disulfide bonds
 - Inter-chain
 - Intra-chain
- ✓ Variable & Constant regions in each chain
 - $V_L \& C_L$
 - $-V_H \& C_H$
- ✓ Forms globular loop like structure called as domains
- Hinge Region: proline-rich (The μ and ε heavy chains, which lack a hinge region, contain an additional domain in the middle of the molecule).

Basic Immunoglobulin Structure

✓ A monomer (H2L2) of an immunoglobulin molecule is made up of:

- 2 Light Chains (identical) ~25 KDa
- 2 Heavy Chains (identical) ~50 KDa
- ✓ Each light chain bound to heavy chain by disulfide bonds (H-L)
- ✓ Each heavy chain bound to heavy chain by disulfide bonds (H-H)
- ✓ The ¼ portion of each H chain and ½ of each L chain towards amino terminal are more variable (110 aa each - V_H and V_L) in amino acid composition as compared to the remaining portion towards carboxyl terminal (C_H and C_L) in each monomer, which has nearly constant composition in each domain of a given isotype.
- ✓ CDR (Complementarity Determining Regions) are actual areas where antigen binds and are present within variable region.

Basic Immunoglobulin Structure

Repeating Domains of ~110 a/a

- Intra-chain disulfide bonds within each domain
- ✓ Heavy chains
 - 1 Vн and either 3 or 4 Cн (Cн1, Cн2, Cн3, Cн4)
- ✓ Light chains
 - 1 $V_{\rm L}\,and$ 1 $C_{\rm L}$

✓ Hinge Region

- Rich in cysteine residues (disulfide bonds)
- Rich in proline residues (flexible)
- Proline residues are target for proteolytic digestion (papain and pepsin)
- Hinge found in IgG, IgA and IgD
- IgM and IgE lack hinge region
- They instead have extra CH4 Domain

✓ Oligosaccharides

Structure of the Variable Region

- ✓ Hypervariable (HVR) or Complementarity determining regions (CDR) hot spots within variable region of both H and L chains which exhibit more variation in aa composition than other regions
- ✓ HVRs form paratope the epitope binding region on antibody
- ✓ Framework regions (FR)

Enzymatic digestion of antibodies

- ✓ Digestion with Papain yields
 - 3 fragments
 - 2 identical Fab (each monovalent) and 1 Fc
 - Fab fragment that is antigen binding
 - (Specificity determined by V_H and V_L)
 - Fc crystallize in cold storage
 - Effector functions
- \checkmark Digestion with Pepsin yields
 - F(ab`)₂ (divalent)
 - No Fc recovery; digested entirely
- Mercapto-ethanol reduction eliminates disulfide bonds

Immunoglobulin Classes

- ✓ Sequencing of heavy chains of several immunoglobulins in human beings and mice revealed:
- A highly variable (V) region of 100-110 amino acids at amino terminus of each H chain
- Five basic amino acid sequence patterns in remaining constant (C) region of H chains which differ between H chains of each pattern, but not in all H chains of a given pattern
- $\alpha,\!\gamma,\,\delta,\,\epsilon,\,\mu$ types of heavy chains
- IgA, IgG, IgD, IgE and IgM classes of immunoglobulins
- The above classes are called isotype named on basis of type of heavy chain
- κ or λ light chains; each class can have either of these
- Minor differences led to sub-classes

TABLE 4-1		Chain composition of the five immunoglobulin classes in humans						
Class	Heavy	Subclasses	Light chain	Molecular formula				
lgG	γ	γ1, γ2, γ3, γ4	κ or λ	$\gamma_2 \kappa_2$				
				$\gamma_2 \lambda_2$				
IgM	μ	None	κ or λ	$(\mu_2 \kappa_2)_n$ $(\mu_2 \lambda_2)_n$ n = 1 or 5				
IgA	α	α1, α2	κ or λ	$(\alpha_2 \kappa_2)_n$ $(\alpha_2 \lambda_2)_n$ n = 1, 2, 3, or 4				
IgE	E	None	κ or λ	$\epsilon_2 \kappa_2 \\ \epsilon_2 \lambda_2$				
lgD	δ	None	κ or λ	$\delta_2 \kappa_2 \\ \delta_2 \lambda_2$				

TABLE 4-2	Properties a	and biologic	al activitie	s* of class	es and subc	lasses of hu	iman serur	n immuno	globulins
Property/Activity	lgG1	IgG2	lgG3	IgG4	IgA1	IgA2	IgM [®]	IgE	lgD
Molecular weight	† 150,000	150,000	150,000	150,000	150,000- 600,000	150,000- 600,000	900,000	190,000	150,000
Heavy-chain component	γ1	γ2	γ3	γ4	α1	α2	μ	E	δ
Normal serum level (mg/ml)	9	3	1	0.5	3.0	0.5	1.5	0.0003	0.03
In vivo serum half life (days)	23	23	8	23	6	6	5	2.5	3
Activates classica complement pathway	+	+/-	++	-	-	_	+++	-	
Crosses placenta	+	+/-	+	+	-		-	-	=
Present on membrane of mature B cells				-	100	1777	+	-	+
Binds to Fc receptors of phagocytes	++	+/-	++	+	1	Ξ.	2		
Mucosal transpor	rt —		127	100	++	++	+	1	_
Induces mast-cell degranulation	-	-	-	-	-	-	-	+	

*Activity levels indicated as follows: ++ = high; + = moderate; +/- = minimal; - = none; ? = questionable.

[†]IgG, IgE, and IgD always exist as monomers; IgA can exist as a monomer, dimer, trimer, or tetramer. Membrane-bound IgM is a monomer, but secreted IgM in serum is a pentamer.

‡IgM is the first isotype produced by the neonate and during a primary immune response.

General structures of the five major classes of secreted antibody:

- ✓ The IgG, IgA, and IgD heavy chains (blue, orange, and green, respectively) contain four domains and a hinge region, whereas the IgM and IgE heavy chains (purple and yellow, respectively) contain five domains but no hinge region.
- ✓ The polymeric forms of IgM and IgA contain a polypeptide, called the J chain, that is linked by two disulfide bonds to the Fc region in two different monomers.
- ✓ Serum IgM is always a pentamer; most serum IgA exists as a monomer, although dimers, trimers, and even tetramers are sometimes present.

Antigenic determinants on immunoglobulins

- ✓ Immunoglobulins, being protein in nature, are themselves immunogenic for other individuals of same or different species, i.e. Igs also have epitopes,
- ✓ Antigenic Determinants on Abs are of three types:
 - Isotypic
 - Allotypic
 - Idiotypic

Isotypic determinants

- ✓ prefix 'Iso' means same in all members of the same species
- ✓ Antigenic determinants that characterize the classes and subclasses of heavy chains and types and subtypes of light chains in a species are called as isotypic determinants
- ✓ the isotypic determinants are present in the constant region of heavy and light chains
- ✓ the isotypic determinants between different species are not the same
- ✓ if you inject an Ab from one species in a different species then the injected antibodies are recognized as foreign, resulting in the induction of antibodies (antiantibodies) - anti-isotype is generated
- $\checkmark\,$ if within same species, no anti-isotype produced

Allotypic determinants

- \checkmark the prefix 'Allo' means that different in individuals of the same species.
- ✓ even though same isotype, within one species small differences (1-4 a/a) arise in different individuals (due to polymorphism).
- ✓ antigenic determinants specified by allelic forms of the Ig genes are called as allotypic determinants.
- ✓ if an animal of one species is injected with such Ab from another animal of same species, the former will generate anti-allotype Abs, provided that the two animals differ in their allotypic determinants, e.g. A2m (1), A2m (2)
 - during pregnancy
 - blood transfusion

Idiotypic determinants

- ✓ Antigen-binding site in antibody molecule is formed by the hypervariable regions of the VH and VL chains. These HVRs also act as immunogen.
- ✓ The antigenic determinants of the VH and VL region, unique to an antibody molecule of a given specificity, are called idiotypic determinants or idiotopes.
- ✓ One antibody molecule has many idiotopes in the antigen-binding site or adjacent to it. The sum of the individual idiotopes in an antibody molecule is called the idiotype of the antibody (antigenic determinants created by the HVR = Idiotypes)
- ✓ The idiotopes are further designated alpha, beta, and gamma idiotopes.
 - **Alpha idiotope** lie outside the antigen-binding site of hyper-variable region.
 - **Beta idiotope** lie close to the antigen binding site of hyper- variable region.
 - Gamma idiotope is formed by the amino acids of the antigen binding site.
- ✓ If a monoclonal antibody against an idiotype is injected into a genetically identical recipient then anti-idiotypic antibodies are generated; no anti-isotypic and no anti-allotypic Abs will be generated

Acknowledgement

Pharmaceutical Biotechnology

Concepts and Applications

Gary Walsh University of Linerick, Republic of Indund

Pearson Education Inc.

1807 #WILEY 2007 John Wiley & Sons, Ltd

For Query

chandreshsharma@csjmu.ac.in; sharmac3001@gmail.com