

BP 605 T. Pharmaceutical Biotechnology (Theory)

Structure of Immunoglobulins

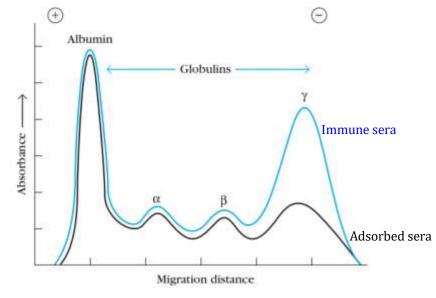
Dr Chandresh Sharma

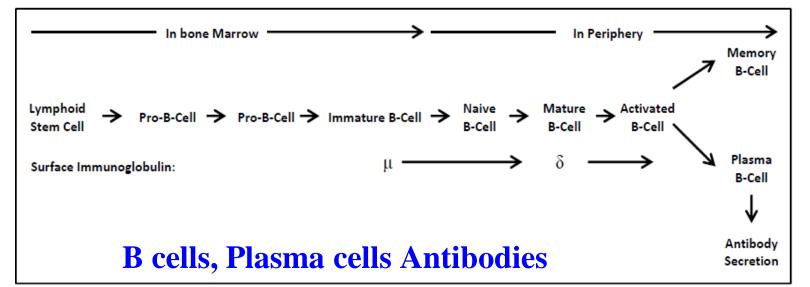
Assistant Professor

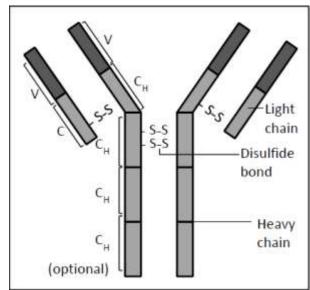
Department of Biotechnology

Chhatrapati Shahu Ji Maharaj University, Kanpur

Overview

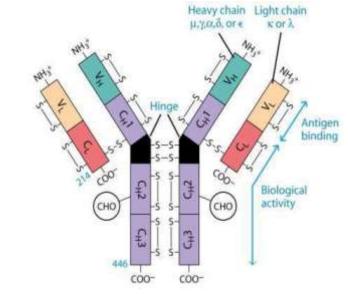

Definition and Introduction

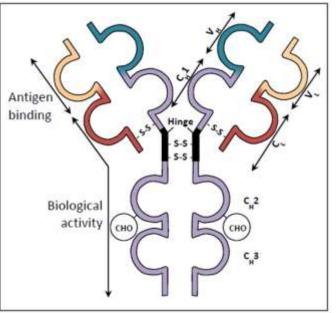

Immunoglobulins Structure


Immunoglobulins Function

Immunoglobulins

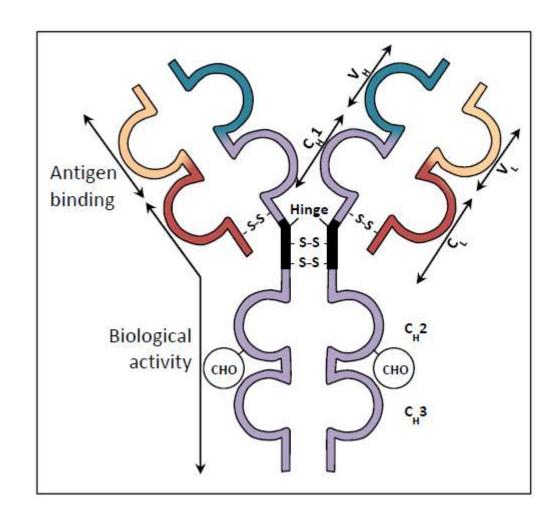
- **Definition:** Immunoglobulins are glycoprotein molecules **belonging to γ-globulins class of plasma proteins** produced in response to a non-self or an altered self immunogen and act as antibodies in humoral adaptive immune response.
- ✓ Immunoglobulins are produced in vertebrates by plasma cells, which are the terminally differentiated B lymphocytes



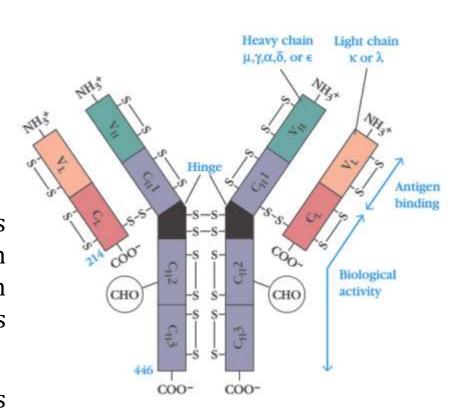


Basic Immunoglobulin Structure

- ✓ γ-globulin
- **✓** glycoprotein
- **✓** heterodimer
- ✓ 'Y' shaped molecule
- ✓ coded by immunoglobulin supergene family
- ✓ Secreted antibodies are the major effector molecules of humoral immunity



Immunoglobulin Structure - a monomer (H2L2)


- ✓ 2 Heavy & 2 Light chains
- ✓ Disulfide bonds
 - Inter-chain
 - Intra-chain
- ✓ Variable & Constant regions in each chain
 - $-V_L \& C_L$
 - $-V_H \& C_H$
- ✓ Forms globular loop like structure called as domains
- \checkmark Hinge Region: proline-rich (The μ and ε heavy chains, which lack a hinge region, contain an additional domain in the middle of the molecule).

Basic Immunoglobulin Structure

- ✓ A monomer (H2L2) of an immunoglobulin molecule is made up of:
 - 2 Light Chains (identical) ~25 KDa
 - 2 Heavy Chains (identical) ~50 KDa
- ✓ Each light chain bound to heavy chain by disulfide bonds (H-L)
- ✓ Each heavy chain bound to heavy chain by disulfide bonds (H-H)
- ✓ The ¼ portion of each H chain and ½ of each L chain towards amino terminal are more variable (110 aa each V_H and V_L) in amino acid composition as compared to the remaining portion towards carboxyl terminal (C_H and C_L) in each monomer, which has nearly constant composition in each domain of a given isotype.
- ✓ CDR (Complementarity Determining Regions) are actual areas where antigen binds and are present within variable region.

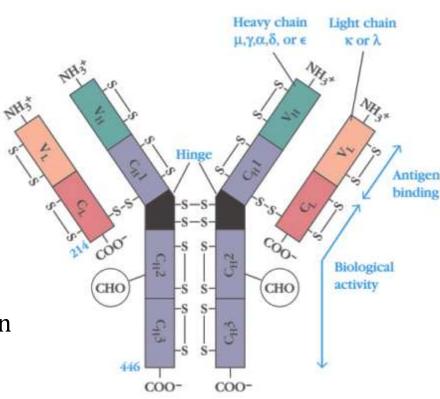
Basic Immunoglobulin Structure

✓ Repeating Domains of ~110 a/a

- Intra-chain disulfide bonds within each domain

✓ Heavy chains

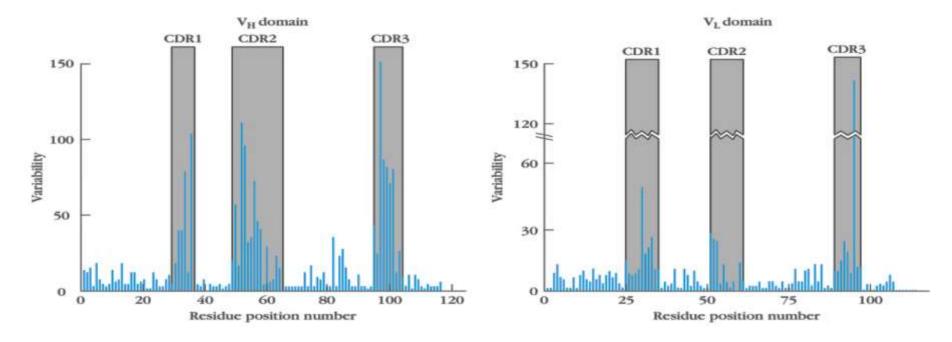
– 1 Vн and either 3 or 4 Cн (Сн1, Сн2, Сн3, Сн4)

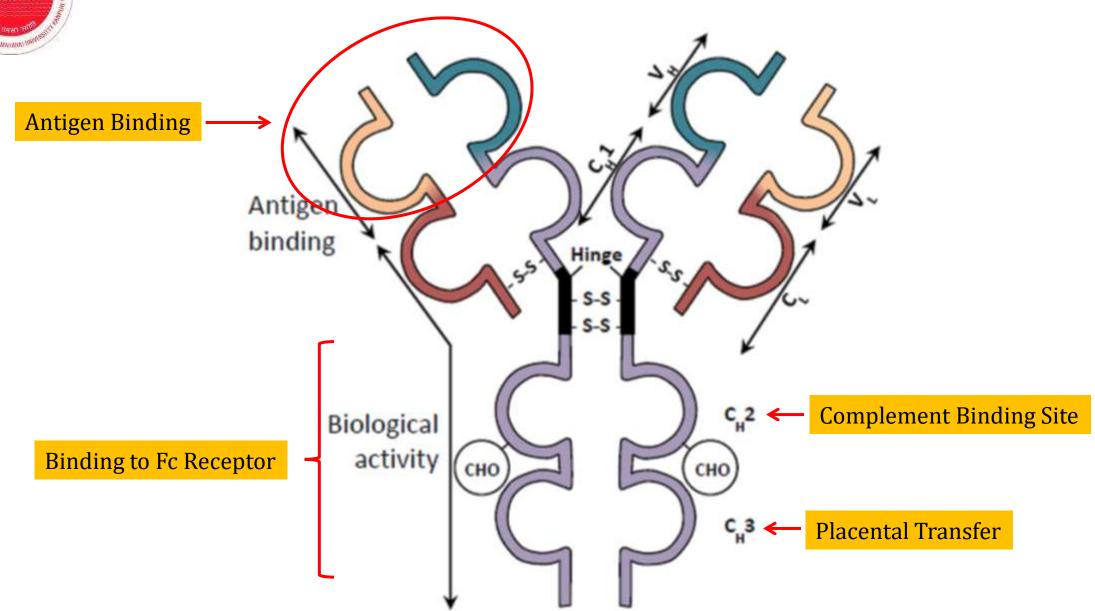

✓ Light chains

- 1 VL and 1 CL

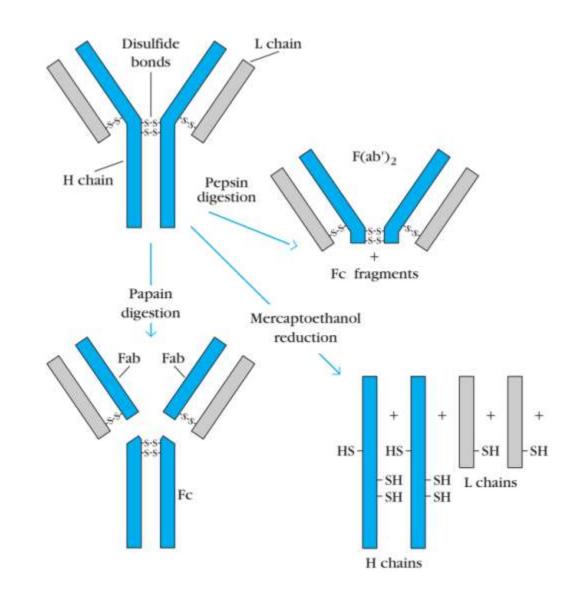
✓ Hinge Region

- Rich in cysteine residues (disulfide bonds)
- Rich in proline residues (flexible)
- Proline residues are target for proteolytic digestion (papain and pepsin)
- Hinge found in IgG, IgA and IgD
- IgM and IgE lack hinge region
- They instead have extra Cн4 Domain


✓ Oligosaccharides


Structure of the Variable Region

- ✓ Hypervariable (HVR) or Complementarity determining regions (CDR) hot spots within variable region of both H and L chains which exhibit more variation in aa composition than other regions
- ✓ HVRs form paratope the epitope binding region on antibody
- ✓ Framework regions (FR)


Immunoglobulin Fragments: Structure/Function Relationships

Enzymatic digestion of antibodies

- ✓ Digestion with Papain yields
 - 3 fragments
 - 2 identical Fab (each monovalent) and 1 Fc
 - Fab fragment that is antigen binding $\hbox{(Specificity determined by V_H and V_L)}$
 - Fc crystallize in cold storage
 - Effector functions
- ✓ Digestion with Pepsin yields
 - F(ab')₂ (divalent)
 - No Fc recovery; digested entirely
- ✓ Mercapto-ethanol reduction eliminates disulfide bonds

Immunoglobulin Classes

- ✓ Sequencing of heavy chains of several immunoglobulins in human beings and mice revealed:
- A highly variable (V) region of 100-110 amino acids at amino terminus of each H chain
- Five basic amino acid sequence patterns in remaining constant (C) region of H chains which differ between H chains of each pattern, but not in all H chains of a given pattern
- $-\alpha$, γ , δ , ϵ , μ types of heavy chains
- IgA, IgG, IgD, IgE and IgM classes of immunoglobulins
- The above classes are called isotype named on basis of type of heavy chain
- κ or λ light chains; each class can have either of these
- Minor differences led to sub-classes

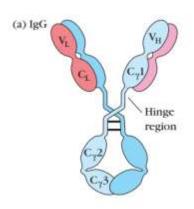
TABLE 4-1 Chain composition of the five immunoglobulin classes in humans

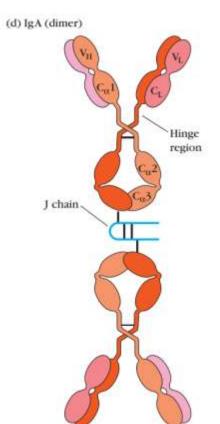
Class	Heavy chain	Subclasses	Light chain	Molecular formula γ ₂ κ ₂		
IgG	γ	γ1, γ2, γ3, γ4	$\kappa \text{ or } \lambda$			
				$\gamma_2\lambda_2$		
lgM	μ	None	κorλ	$(\mu_2 \kappa_2)_n$ $(\mu_2 \lambda_2)_n$ $n = 1 \text{ or } 5$		
IgA	α	α1, α2	κorλ	$(\alpha_2 \kappa_2)_n$ $(\alpha_2 \lambda_2)_n$ $n = 1, 2, 3, \text{ or } 4$		
IgE	€	None	$\kappa \text{ or } \lambda$	$\epsilon_2 \kappa_2$ $\epsilon_2 \lambda_2$		
IgD	δ	None	κorλ	$\delta_2 \kappa_2 \\ \delta_2 \lambda_2$		

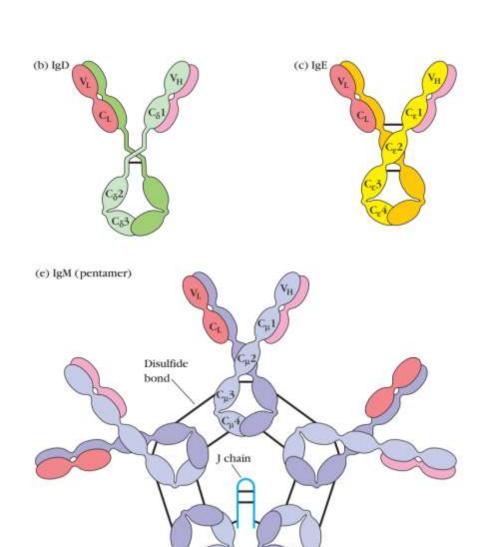
TABLE 4-2 Properties and biological activities* of classes and subclasses of human serum immunoglobulins

Property/Activity	IgG1	lgG2	IgG3	lgG4	IgA1	IgA2	lgM [®]	IgE	IgD
Molecular weight†	150,000	150,000	150,000	150,000	150,000- 600,000	150,000- 600,000	900,000	190,000	150,000
Heavy-chain component	γ1	γ2	γ3	γ4	α1	α2	μ	€	δ
Normal serum level (mg/ml)	9	3	1	0.5	3.0	0.5	1.5	0.0003	0.03
In vivo serum half life (days)	23	23	8	23	6	6	5	2.5	3
Activates classical complement pathway	+	+/-	++	-	-	_	+++	-	=
Crosses placenta	+	+/-	+	+	-	_	-	_	=:
Present on membrane of mature B cells	-	11=2	=	-	=	=	+	-3-	+
Binds to Fc receptors of phagocytes	++	+/-	++	+	=	=	?	-35	-
Mucosal transport	-	1770	=	-	++	++	+	=	_
Induces mast-cell degranulation	-	7-3	-	-	-	-	-	+	-

^{*}Activity levels indicated as follows: ++ = high; + = moderate; +/- = minimal; - = none; ? = questionable.

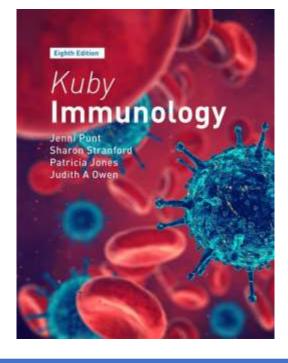

[†]IgG, IgE, and IgD always exist as monomers; IgA can exist as a monomer, dimer, trimer, or tetramer. Membrane-bound IgM is a monomer, but secreted IgM in serum is a pentamer.


IgM is the first isotype produced by the neonate and during a primary immune response.



General structures of the five major classes of secreted antibody:

- ✓ The IgG, IgA, and IgD heavy chains (blue, orange, and green, respectively) contain four domains and a hinge region, whereas the IgM and IgE heavy chains (purple and yellow, respectively) contain five domains but no hinge region.
- ✓ The polymeric forms of IgM and IgA contain a polypeptide, called the J chain, that is linked by two disulfide bonds to the Fc region in two different monomers.
- ✓ Serum IgM is always a pentamer; most serum IgA exists as a monomer, although dimers, trimers, and even tetramers are sometimes present.


Acknowledgement

Pharmaceutical Biotechnology

Concepts and Applications

Gary Walsh

University of Limerick, Republic of Iruland

For Query

Pearson Education Inc.

chandreshsharma@csjmu.ac.in; sharmac3001@gmail.com