Mathematical Analysis of Interference of light

Let there are two light waves of same frequency and different amplitudes a_1 and a_2 . Then the equations of waves (resultant displacement due to waves) at any time 't', are given as:

where ' δ ' is the phase difference between the two waves.

According to the principle of superposition, the resultant displacement

$$y = y_1 + y_2 = a_1 \sin \omega t + a_2 \sin (\omega t + \delta)$$

$$y = a_1 \sin \omega t + a_2 \sin \omega t \cos \delta + a_2 \cos \omega t \sin \delta$$

$$= (a_1 + a_2 \cos \delta) \sin \omega t + a_2 \sin \delta \cos \omega t \qquad \dots \dots (3)$$

or Let

 $a_1 + a_2 \cos \delta = A \cos \phi \qquad \dots \dots (4)$

and $a_2 \sin \delta = A \sin \phi$

where A and ϕ are new unknown constants

On using (4) and (5) in equation (3) we get –

y = A cos
$$\phi$$
 sin ωt + A sin ϕ cos ωt
y = A sin (ωt + ϕ)(6)

.....(5)

hence resultant vibration at P is simple harmonic of amplitude A and phase ϕ .

Squaring and addition $eq^n s$ (4) and (5).

$$(a_1 + a_2 \cos \delta)^2 + (a_2 \sin \delta)^2 = A^2$$
$$A^2 = a_1^2 + a_2^2 \cos^2 \delta + 2a_1 a_2 \cos \delta + a_2^2 \sin^2 \delta$$

or

or

or

or

or

$$A^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos\delta$$
$$A = \sqrt{a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos\delta}$$

which is the resultant distribution or amplitude.

The resultant intensity is given by –

We know Intensity α (Amplitude)²

 $I \neq a_1^2 + a_2^2$, this shows if a_1 and a_2 are constant, the intensity I will vary from point to point in the region of interference of two waves, according to the variation of $\cos^2 \delta/2$. The intensity variation is of the cosine square ($\cos \delta$) form.

Phase difference ϕ , ;

by $eq^{n}(5)$ and $eq^{ns}(4)$,

$$\tan \phi = \frac{a_2 \sin \delta}{a_1 + a_2 \cos \delta}$$