Mathematical Analysis of Interference of light

Let there are two light waves of same frequency and different amplitudes a_{1} and a_{2}. Then the equations of waves (resultant displacement due to waves) at any time ' t ', are given as:

$$
\begin{align*}
& \mathrm{y}_{1}=\mathrm{a}_{1} \sin \omega \mathrm{t}, \tag{1}\\
& \mathrm{y}_{2}=\mathrm{a}_{2} \sin (\omega \mathrm{t}+\delta), \tag{2}
\end{align*}
$$

where ' δ ' is the phase difference between the two waves.

According to the principle of superposition, the resultant displacement

$$
\begin{align*}
& \mathrm{y}=\mathrm{y}_{1}+\mathrm{y}_{2}=\mathrm{a}_{1} \sin \omega \mathrm{t}+\mathrm{a}_{2} \sin (\omega \mathrm{t}+\delta) \\
& \mathrm{y}=\mathrm{a}_{1} \sin \omega \mathrm{t}+\mathrm{a}_{2} \sin \omega \mathrm{t} \cos \delta+a_{2} \cos \omega \mathrm{t} \sin \delta \tag{3}
\end{align*}
$$

or $\quad=\left(\mathrm{a}_{1}+\mathrm{a}_{2} \cos \delta\right) \sin \omega \mathrm{t}+\mathrm{a}_{2} \sin \delta \cos \omega \mathrm{t}$
Let $\quad \mathrm{a}_{1}+\mathrm{a}_{2} \cos \delta=A \cos \phi$
and $\quad \mathrm{a}_{2} \sin \delta=A \sin \phi$
where A and ϕ are new unknown constants
On using (4) and (5) in equation (3) we get -

$$
\begin{align*}
& \mathrm{y}=\mathrm{A} \cos \phi \sin \omega t+A \sin \phi \cos \omega t \\
& \mathrm{y}=\mathrm{A} \sin (\omega t+\phi) \tag{6}
\end{align*}
$$

hence resultant vibration at P is simple harmonic of amplitude A and phase ϕ.

Squaring and addition $\mathrm{eq}^{\mathrm{n}} \mathrm{s}$ (4) and (5).

$$
\left(\mathrm{a}_{1}+\mathrm{a}_{2} \cos \delta\right)^{2}+\left(a_{2} \sin \delta\right)^{2}=A^{2}
$$

or

$$
\mathrm{A}^{2}=a_{1}^{2}+a_{2}^{2} \cos ^{2} \delta+2 a_{1} a_{2} \cos \delta+a_{2}^{2} \sin ^{2} \delta
$$

or

$$
\begin{aligned}
& \mathrm{A}^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \delta \\
& \mathrm{~A}=\sqrt{a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \delta}
\end{aligned}
$$

which is the resultant distribution or amplitude.
The resultant intensity is given by -
We know Intensity α (Amplitude) 2

$$
\begin{equation*}
\mathrm{I}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \delta \tag{7}
\end{equation*}
$$

or $\quad \mathrm{I}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}\left(2 \cos ^{2} \delta / 2-1\right)$
or $\quad=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}+4 a_{1} a_{2} \cos ^{2} \delta / 2$
or $\quad \mathrm{I}=\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right)^{2}+4 \mathrm{a}_{1} \mathrm{a}_{2} \cos ^{2} \delta / 2$
I $\neq a_{1}^{2}+a_{2}^{2}$, this shows if a_{1} and a_{2} are constant, the intensity I will vary from point to point in the region of interference of two waves, according to the variation of $\cos ^{2} \delta / 2$. The intensity variation is of the cosine square $(\cos \delta)$ form.

Phase difference ϕ, ;
by eq ${ }^{\mathrm{n}}$ (5) and eq${ }^{\mathrm{ns}}$ (4),

$$
\tan \phi=\frac{a_{2} \sin \delta}{a_{1}+a_{2} \cos \delta}
$$

