Subject Name: Mathematic II
 Topic: Partial Order Relations and Lattices Part -1

By

Dr. RITESH AGARWAL
Department of Computer Application
UIET, CSJM University, Kanpur

Partial order Relation

Let A be non-empty set and R be a relation defined on A. Then R is said to be Partial order Relation if it is
(i) Reflexive i.e. ${ }_{a} R_{a} \forall a \in A$
(ii)Anti-Symmetric i.e. ${ }_{a} R_{b},{ }_{b} R_{a} \Rightarrow a=b \quad \forall a, b \in A$
(iii) Transitive i.e. ${ }_{a} R_{b}$ and ${ }_{b} R_{c} \Rightarrow{ }_{a} R_{c} \forall a, b, c \in A$

Partial Order Set (Po-set) - A set A together with a partial order relation R in it is called Partially ordered set (Po-set) and is denoted by (P, R)

Q1. Let N be the set of positive Integers prove that the relation \leq where \leq has its usual meaning a partial order relation on N .

Solution - Given -N be a positive Integers
Aim
Show that \leq is a Partial order relation
(i) Reflexive relation $\forall a \in N$

$$
\Rightarrow a \leq a
$$

$\Rightarrow a$ is less than or equal to a itself
\leq is reflexive
(ii) Anti-Symmetric relation Let $\forall a, b \in N$ and
$a \leq b, b \leq a$ then $a=b$

Hence the relation \leq is Anti-Symmetric
(iii) Transitive Relation Let $a, b, c \in N$ and
$a \leq b, b \leq c$ then $a \leq c$
\leq is Transitive

Hence \leq is a Partial order relation
Q2. Prove that the relation "a divides b", if there exist a positive integer and is obtained by a $\mid \mathrm{b}$, on the set of all positive integers N is a partial order relation.

Solution (i) Reflexive relation $\forall a \in N$

$$
\Rightarrow a \mid a
$$

Hence the relation ' \mid ' is reflexive
(ii) Anti-Symmetric relation Let $a, b \in N$ and
$a|b, b| a \Rightarrow$ there exist an integer c_{1}, c_{2} such that $a c_{1}=b, b c_{2}=a$
$c_{1} c_{2}=\frac{b}{a} \frac{a}{b}$
$\Rightarrow c_{1} c_{2}=1$
$\Rightarrow c_{1}=1=c_{2}$
$\Rightarrow a=b$

Hence the relation ' \mid ' is Anti-Symmetric
(iii) Transitive Relation Let $a, b, c \in N$ and $a|b, b| c \Rightarrow \exists$ positive integer d_{1}, d_{2} such that $a d_{1}=b, b d_{2}=c$
$a d_{1} d_{2}=c$
$\Rightarrow \exists$ an integer d such that $a d=c$,
$\Rightarrow a \mid c$

Hence the relation '|' is Transitive

Thus, the relation ' \mid ' is a Partial order relation

Referential Books:

1. S.K. Sarkar, "Discrete Maths"; S. Chand \& Co.,2000.
2. H.K. Dass, "Advanced Engineering Mathematics", S. Chand \& Co., 9th RevisedEd.
3. "Discrete Mathematics", Schaum's Outlines.
