
Principal Component Analysis 

Principal Component Analysis, or PCA, is a dimensionality-reduction 
method that is often used to reduce the dimensionality of large data sets, 

by transforming a large set of variables into a smaller one that still 

contains most of the information in the large set. Finally PCA deals the 

process to reduce the number of variables of a data set, while preserving as 

much information as possible. 

Reducing the number of variables of a data set naturally comes at the 

expense of accuracy, but the trick in dimensionality reduction is to trade a 

little accuracy for simplicity. Because smaller data sets are easier to 
explore and visualize and make analyzing data much easier and faster for 

machine learning algorithms without extraneous variables to process. 

 

 Principal Components :- 

 

 Before getting to the explanation of these concepts, let’s first understand 

what do we mean by principal components. 
 

   Principal components are new variables that are constructed as linear 

combinations or mixtures of the initial variables. These combinations are 

done in such a way that the new variables (i.e., principal components) are 

uncorrelated and most of the information within the initial variables is 

squeezed or compressed into the first components. So, the idea is 10-

dimensional data gives you 10 principal components, but PCA tries to put 

maximum possible information in the first component, then maximum 
remaining information in the second and so on, until having something 

like shown in the scree plot below. 



Percentage of Variance (Information) for each by PC 

Organizing information in principal components this way, will allow you 

to reduce dimensionality without losing much information, and this by 

discarding the components with low information and considering the 

remaining components as your new variables. 

An important thing to realize here is that, the principal components are less 

interpretable and don’t have any real meaning since they are constructed as 

linear combinations of the initial variables. 

Geometrically speaking, principal components represent the directions of 

the data that explain a maximal amount of variance, that is to say, the 

lines that capture most information of the data. The relationship between 

variance and information here, is that, the larger the variance carried by a 

line, the larger the dispersion of the data points along it, and the larger the 
dispersion along a line, the more the information it has. To put all this 

simply, just think of principal components as new axes that provide the 

best angle to see and evaluate the data, so that the differences between the 

observations are better visible. 



STEP BY STEP EXPLANATION OF PCA 

Step-1: STANDARDIZATION 

If there are large differences between the ranges of initial variables, those 

variables with larger ranges will dominate over those with small ranges 
(For example, a variable that ranges between 0 and 100 will dominate over 

a variable that ranges between 0 and 1), which will lead to biased results. 

So, transforming the data to comparable scales can prevent this problem. 

The aim of this step is to standardize the range of the continuous initial 

variables so that each one of them contributes equally to the analysis. 

Once the standardization is done, all the variables will be transformed to 

the same scale 

Mathematically, this can be done by subtracting the mean and dividing by 
the standard deviation for each value of each variable. 

                        Z =  
𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

  

Step-2: COMPUTATION OF COVARIANCE MATRIX 

The aim of this step is to understand how the variables of the input data set 

are varying from the mean with respect to each other, or in other words, to 

see if there is any relationship between them. Because sometimes, 
variables are highly correlated in such a way that they contain redundant 

information. So, in order to identify these correlations, we compute the 

covariance matrix. 

The covariance matrix is a p × p symmetric matrix (where p is the number 

of dimensions) that has as entries the covariances associated with all 

possible pairs of the initial variables. For example, for a 3-dimensional 

data set with 3 variables x, y, and z, the covariance matrix is a 3×3 matrix 
of this from: 



Covariance Matrix for 3-

Dimensional Data 

Since the covariance of a variable with itself is its variance 

(Cov(a,a)=Var(a)), in the main diagonal (Top left to bottom right) we 

actually have the variances of each initial variable. And since the 

covariance is commutative (Cov(a,b)=Cov(b,a)), the entries of the 

covariance matrix are symmetric with respect to the main diagonal, which 
means that the upper and the lower triangular portions are equal. 

 

Now, that we know that the covariance matrix is not more than a table that 

summaries the correlations between all the possible pairs of variables. 

  

Step-3: TO COMPUTE EIGENVECTORS &EIGENVALUES 
In this step we compute eigenvectors and eigenvalues of the covariance 

matrix in order to determine the principal components of the data. 

Every eigenvector has an eigenvalue and their number is equal to the 

number of dimensions of the data. For example, for a 3-dimensional data 

set, there are 3 variables, therefore there are 3 eigenvectors with 3 

corresponding eigenvalues 

  
 Construction of  the Principal Components 

By ranking the eigenvectors in order of their eigenvalues, highest to 
lowest, we get the principal components in order of significance 

The eigenvectors of the Covariance matrix are actually the directions of 

the axes where there is the most variance(most information) and that we 

call Principal Components. And eigenvalues are simply the coefficients 

attached to eigenvectors, which give the amount of variance carried in 

each Principal Component 

As there are as many principal components as there are variables in the 

data, principal components are constructed in such a manner that the first 



principal component accounts for the largest possible variance in the data 

set. For example, let’s assume that the scatter plot of our data set is as 

shown below, can we guess the first principal component ? Yes, it’s 

approximately the line that matches the purple marks because it goes 
through the origin and it’s the line in which the projection of the points 

(red dots) is the most spread out. Or mathematically speaking, it’s the line 

that maximizes the variance (the average of the squared distances from the 

projected points (red dots) to the origin). 

 
The second principal component is calculated in the same way, with the 

condition that it is uncorrelated with (i.e., perpendicular to) the first 

principal component and that it accounts for the next highest variance. 

This continues until a total of p principal components have been 
calculated, equal to the original number of variables. 

. 

Example: 
Let’s suppose that our data set is 2-dimensional with 2 variables x,y and 

that the eigenvectors and eigenvalues of the covariance matrix are as 

follows: 



 
If we rank the eigenvalues in descending order, we get λ1>λ2, which 

means that the eigenvector that corresponds to the first principal 

component (PC1) is v1 and the one that corresponds to the second 

component (PC2) isv2. 
After having the principal components, to compute the percentage of 

variance (information) accounted for by each component, we divide the 

eigenvalue of each component by the sum of eigenvalues. If we apply this 

on the example above, we find that PC1 and PC2 carry respectively 96% 

and 4% of the variance of the data. 

Step-4:FORMATION OF FEACHER VECTOR 

As we saw in the previous step, computing the eigenvectors and ordering 

them by their eigenvalues in descending order, allow us to find the 
principal components in order of significance. In this step, what we do is, 

to choose whether to keep all these components or discard those of lesser 

significance (of low eigenvalues), and form with the remaining ones a 

matrix of vectors that we call Feature vector. 

So, the feature vector is simply a matrix that has as columns the 

eigenvectors of the components that we decide to keep. This makes it the 

first step towards dimensionality reduction, because if we choose to keep 

only p eigenvectors (components) out of n, the final data set will have 
only p dimensions. 

 

Example: 

 

Continuing with the example from the previous step, we can either form a 

feature vector with both of the eigenvectors v1 and v2: 

 
Or discard the eigenvector v2, which is the one of lesser significance, and 
form a feature vector with v1 only: 



 
 

Discarding the eigenvector v2 will reduce dimensionality by 1, and will 

consequently cause a loss of information in the final data set. But given 

that v2 was carrying only 4% of the information, the loss will be therefore 

not important and we will still have 96% of the information that is carried 

by v1. 

So, as we saw in the example, it’s up to you to choose whether to keep all 

the components or discard the ones of lesser significance, depending on 

what you are looking for. Because if you just want to describe your data in 
terms of new variables (principal components) that are uncorrelated 

without seeking to reduce dimensionality, leaving out lesser significant 

components is not needed. 

  

Step-5:TO REORIENT DATA SET ALONG PRINCIPAL 

COMPONENT AXES 

In the previous steps, apart from standardization, we do not make any 

changes on the data, we just select the principal components and form the 

feature vector, but the input data set remains always in terms of the 
original axes (i.e, in terms of the initial variables), So in this step,  We  

reorient the data from the original axes to the ones represented by the 

principal components (hence the name Principal Components Analysis) by 

using the feature vector . This can be done by multiplying the transpose of 

the original data set by the transpose of the feature vector. 

Final data set  =  transpose of the original data  × transpose of the feature 

vector. 

 

* * * 

 


