

BP 605 T. Pharmaceutical Biotechnology (Theory)

Brief Introduction to Protein Engineering

Dr Chandresh Sharma

Assistant Professor

Department of Biotechnology

Chhatrapati Shahu Ji Maharaj University, Kanpur

Overview

What protein engineering is

Protein Engineering Methods

Protein Engineering and Applications

PROTEIN ENGINEERING

Protein engineering: Techniques which are used to manipulate the structure and function of a protein so that it acquires specific desired properties.

Genetic engineering: The alteration of the genome of an organism by laboratory techniques

AIMS OF PROTEIN ENGINEERING

APPLICATIONS OF PROTEIN ENGINEERING

THE RATIONAL DESIGN PROCESS

- Based on protein knowledge
 - Structure
 - Mechanism
 - Dynamics
 - Natural variation
- Analogous to mechanical engineering

MODIFICATIONS

CHEMICAL MODIFICATION

- Formaldahyde
 - Extensive modification \rightarrow Inactivated toxoid production
- PEGylation
 - Flexible hydrophilic coat
 - Reduced accessibility \rightarrow Protease resistance and non-antigenicity
- Fluorophores
 - Fluorescent labelling \rightarrow Tracking location or dynamics
- Prosthetic catalytic groups
 - Modified reactivity \rightarrow Altered or novel catalysis
- Considerations
 - Exposure of modified residues
 - Original function of modified residues

- \rightarrow Solubility
- Increased size \rightarrow Serum half-life

Formaldehyde

Uricase immunogenicty

- Reduce immunogenicity • Increase serum half-life
- Attached PEG polymers
 - Lysine coupling
- Optimised PEG number and length
 - Maximise improvements
 - Avoid destabilisation or activity reduction
- Optimal PEG number and length
 - 10kDA polymers
 - 9 polymers per subunit of the tetramer
- 1000x reduced antigenicity
 - Also improved solubility at neutral pH
 - Also increased serum half-life
- Krystexxa (Crealta Pharmaceuticals)

Optimise uricase as gout treatment

PEG-uricase in the management of treatment-resistant gout and hyperuricemia, (M Sherman 2008) Images: Wikimedia commons

ENGINEERING

JUTCOME

Site-directed mutagenesis

- Modified PCR
 - Whole plasmid
 - Overlap extension
- Introduce point mutations
- Introduce *short* insertions or deletions

Fusion proteins

- Creation
 - Remove stop codon of first gene
 - Ligate genes together in frame
 - Include linker codons
- Aims
 - Combine the properties of the components
 - E.g. Addition of antibody Fc fragment to proteins increases their serum halflife
 - Co-localise the components
 - E.g. Set of enzymes that work in a reaction pathway
- Considerations
 - Linker length and flexibility
 - Ability for proteins rotate relative to each other
 - Distance between protein components
 - Protease resilience
 - Ability for domains to fold

Pfu polymerase Processivity

- Create a polymerase for long templates
 - Increase processivity
 - Retain fidelity and stability

- Fusion
 - Pyrococcus furiosus DNA polymerase (Pfu)
 - Sulfolobus solfataricus dsDNA binding domain (Sso7d)

AIM

- Linker
 - Short tripeptide linker
- Generality
 - Also works with other polymerases
- Improvements
 - 10x increase in processivity
 - Improved salt tolerance
 - Can amplify >15kb templates
- Phusion (New England Biolabs)

Pfu (80 U/ml)

0.5 1 2 5 8 10 12 15 Template length (kb)

^{0.5 1 2 5 8 10 12 15} kb Template length (kb)

A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro, (Y Wang 2004) New England Biolabs

OUTCOME

ENGINEERING

Split proteins

- Creation
 - Locate flexible, surface loops
 - Create two open reading frames
 - First half of protein with stop codon in loop
 - Second half of protein with start codon in loop
- Aims
 - Couple colocalisation to activity
 - Fuse half-proteins to other proteins
 - Measure protein binding
 - Biosensor
 - Logic gates
- Considerations
 - Half-proteins must: fold independently
 - not spontaneously 'dimerise'
 - be inactive when apart
 - bind and be active when brought together

Disulphides

- Creation
 - Mutation of two codons to cysteine
 - Protein kept in oxidising environment
- Aims
 - Stability enhancement
 - Enthalpy increase
 - Entropy decrease
- ≈ 3.5 kcal/mol
- ≈ Logarithm of trapped loop length

- Considerations
 - Inter-cysteine distance
 - Inter-cysteine orientation
 - Trapped loop length and flexibility
 - Original function of mutated residues
 - Original function of flexibility
 - Folding pathway of protein (multistep)

N-te

SNSNN

Cyclisation

- Creation
 - Termini of most proteins happen to be close together
 - Express protein with extra linker to bridge gap
 - Ligate peptide ends
- Aims
 - Thermostability
 - Up to 1.7 kcal/mol
 - Protease resistance
 - Especially exopeptidase
- Considerations
 - Linker length
 - Ligation method
 - Chemically (e.g. by solid-phase synthesis)
 - Enzymatically (e.g. by sortase)

Linker length (residues)

Effect of Backbone Cyclization on Protein Folding Stability: Chain Entropies of both the Unfolded and the Folded States are Restricted, (H Zhou 2003,

ENGINEERING

OUTCOME

Conotoxin stability

- Increase conotoxin protease resistance
 - Pain killer activity by specific binding to ion channels
- Improve stability in human blood
- Produced whole peptide by solid-phase synthesis
 - Linker length of 5, 6, or 7 residues

AIM

- cMII-5, cMII-6, cMII-7
- cMII-5
 - No longer folded or functional
- cMII-6 and cMII-7 retained full activity
 - Specific ion channel blocking
 - Minimal structural difference
- Reduced protease susceptibility
 - With purified EndoGluC protease (a)
 - In human blood plasma (b)

Active site modification

- Creation
 - Structural insight into function of active site residues
 - Site-directed mutagenesis to alter key functional groups
- Aims
 - Modify binding
 - Affinity
 - Specificity
 - Sterioselectivity
 - Modify catalysis
 - Modify regulation
- Considerations
 - Requires knowledge of protein structure and mechanism
 - Mutations may have additional, unpredicted effects

PROTEIN STRUCTURE

Scaffold for supporting active site Modulate dynamics

ACTIVE SITE

BINDING SITES

Bind and orient substrate

CATALYTIC SITE

Stabilise transition state Stabilise leaving groups Form intermediate covalent bonds

Bioinformatic approaches

- Codon optimisation
 - Different organisms have different tRNA ratios
 - Matching codon frequency to host increases expression
- Considerations
 - Altered codons can affect mRNA (stability, 2° structure, IRES)
 - Increased translation rates can cause misfolding
- Consensus sequence
 - Most mutations are mildly destabilising
 - Through genetic drift, homologues accumulate different mutations
 - Therefore consensus should be more stable than existing sequences
- Considerations
 - Availability of homologous sequences

ENGINEERING

DUTCOME

Phytase stability

Improve phytase thermostability

- Improving phosphorous bioavailability in animal feed
- Align 13 related fungal sequences
 - Sequences 50 70% identical to each other
 - If no consensus in column → most common residue (*)

AIM

- \rightarrow residue from most stable (^)
- Starting thermostabilities (T_M) 56 63 °C
- Final $T_M = 78 \degree C$
 - Crystal structure resolves loops too flexible to be seen in natural phytases
 - Some residues form hydrogen bond network
- Later work further increased T_M to 90°C
 - Added 6 extra sequences to alignment
 - Changed consensus residues that weren't stabilising

Computational modelling

- Improving stability
 - Model energy of folded and unfolded protein variants
- Improving activity
 - Increase existing catalysis
 - Catalyse new reactions, never seen in nature
 - e.g. Kemp elimination or Retro-aldol
- Considerations
 - Requires deep knowledge of reaction mechanism
 - Requires extreme computational power
 - Simulation either ignores: quantum mechanism of active site
 - or structure and dynamics in rest of protein

De novo enzyme design

- Disembodied amino acids placed to stabilise reaction transition state
- Existing protein structures searched for backbones with correct orientations
- Other residues in active site optimised for packing

- Theoretical enzyme
- Quantum mechanical modelling

Creating a retro-aldolase

• Enzymatically catalyse unnatural reaction

 Retro-aldol reaction not performed by any known enzyme

- Theozyme
 - Amino acids positioned to increase reactivity of nucleophilic Lys, stabilise transition state, stabilise leaving group

AIM

- Protein structures searched for backbones that could correctly position these residues
- Surrounding residues optimised for packing
- 42 designs in 13 protein scaffolds
 - Active sites grafted onto backbone
 - Genes synthesised and expressed

- 75% of variants showed rate enhancements 10^{1} - $10^{4} k_{cat}/k_{uncat}$
 - Still many orders of magnitude worse than natural enzymes
- Crystal structure of most active complexed with covalent inhibitor
 - Confirmed mechanism proceeds as designed

ENGINEERING

OUTCOME

Pros and cons of rational design

BENEFITS

- Intellectually satisfying
- Controlled outcome
- Range of available techniques
- Increasing computational power

LIMITATIONS

- Requires deep understanding
 - Natural variation
 - Structure
 - Dynamics
 - Mechanism
 - ...for starting protein *and* changes
- High failure rate
 - Failures rarely reported

Pharmaceutical Biotechnology

Concepts and Applications

Gary Walsh University of Limerick, Republic of Ireland

For Query

chandreshsharma@csjmu.ac.in; sharmac3001@gmail.com