## Introduction

**Transition metal**, occupy the middle portions of the periodic table of elements between the groups on the left-hand side and the groups on the right, Whose inner d and f orbitals are not completely filled.

## **General Properties of transition elements**

The most striking similarities of elements are that they are all metals and that most of them are hard, strong, and lustrous, have high melting and boiling points, and are good conductors of heat and electricity.

- Many of the elements are technologically important: Titanium, Iron, Nickel, and Copper for example, are used structurally and in electrical technology.
- Second, the transition metals form many useful alloys , with one another and with other metallic elements. Third, most of these elements dissolve in mineral acids, although a few, such as Platinum, Silver and Gold, are called "noble"—that is, are unaffected by simple (nonoxidizing) acids.
- Without exception, the elements of the main transition series (i.e., excluding the lanthanoids and actinoids as specified below) form stable compounds in two or more formal oxidation states.

The transition metals may be subdivided according to the electronic structures of their atoms into three main transition series, called the First, Second, and Third transition series, and two inner transition series, called the Lanthanoids and the Actinoids.

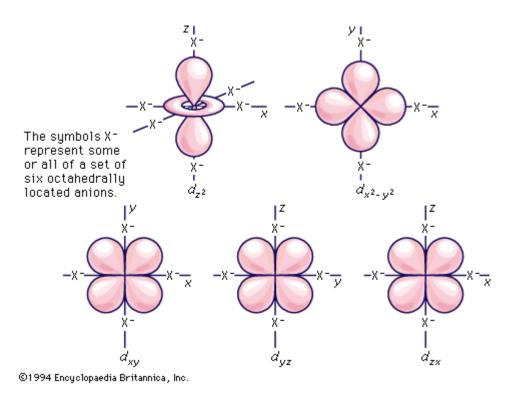
i) The first main transition series begins with either Scandium (symbol Sc, At. No. 21) or titanium (symbol Ti, atomic number 22) and ends with zinc (symbol Zn, atomic number 30).

ii) The second series includes the elements Yttrium (symbol Y, atomic number 39) to Cadmium (symbol Cd, atomic number 48).

iii)The third series extends from Lanthanum (symbol La, atomic number 57) to Mercury (symbol Hg, atomic number 80).

These three main transition series are included in the set of 30 elements often called the *d*-block transition metals. Because scandium, yttrium, and lanthanum actually do not form compounds analogous to those of the other transition metals because they have quite homologous chemistry to that of the lanthanoids, they are excluded from the present discussion of the main transition metalsThe remaining *d*-block transition metals and some of their characteristic properties are listed in the Table.

|        |            | symbol | atomic<br>number | atomic<br>mass | density (grams<br>per cubic<br>centimetre, 20 | melting<br>point<br>(°C) | boiling<br>point<br>(°C) |
|--------|------------|--------|------------------|----------------|-----------------------------------------------|--------------------------|--------------------------|
|        |            |        |                  |                | °C)                                           |                          |                          |
| 1st    | titanium   | Ti     | 22               | 47.867         | 4.54                                          | 1,668                    | 3,287                    |
| main   | vanadium   | V      | 23               | 50.942         | 6.11                                          | 1,910                    | 3,407                    |
| series | chromium   | Cr     | 24               | 51.996         | 7.14                                          | 1,907                    | 2,672                    |
|        | manganese  | Mn     | 25               | 54.938         | 7.21–7.44                                     | 1,246                    | 2,061                    |
|        | iron       | Fe     | 26               | 55.845         | 7.87                                          | 1,538                    | 2,861                    |
|        | cobalt     | Со     | 27               | 58.933         | 8.9                                           | 1,495                    | 2,927                    |
|        | nickel     | Ni     | 28               | 58.693         | 8.9                                           | 1,455                    | 2,913                    |
|        | copper     | Cu     | 29               | 63.546         | 8.92                                          | 1,085                    | 2,927                    |
| 2nd    | zirconium  | Zr     | 40               | 91.224         | 6.51                                          | 1,855                    | 4,409                    |
| main   | niobium    | Nb     | 41               | 92.906         | 8.57                                          | 2,477                    | 4,744                    |
| series | molybdenum | Мо     | 42               | 95.94          | 10.22                                         | 2,623                    | 4,639                    |
|        | technetium | Тс     | 43               | 98             | 11.5                                          | 2,157                    | 4,265                    |
|        | ruthenium  | Ru     | 44               | 101.07         | 12.41                                         | 2,334                    | 4,150                    |
|        | rhodium    | Rh     | 45               | 102.906        | 12.41                                         | 1,964                    | 3,695                    |
|        | palladium  | Pd     | 46               | 106.42         | 12.02                                         | 1,555                    | 2,963                    |
|        | silver     | Ag     | 47               | 107.868        | 10.49                                         | 962                      | 2,162                    |
| 3rd    | hafnium    | Hf     | 72               | 178.49         | 13.31                                         | 2,233                    | 4,603                    |
| main   | tantalum   | Та     | 73               | 180.948        | 16.65                                         | 3,017                    | 5,458                    |
| series | tungsten   | W      | 74               | 183.84         | 19.3                                          | 3,422                    | 5,555                    |
|        | rhenium    | Re     | 75               | 186.207        | 21.02                                         | 3,186                    | 5,596                    |
|        | osmium     | Os     | 76               | 190.23         | 22.57                                         | 3,033                    | 5,012                    |
|        | iridium    | Ir     | 77               | 192.217        | 22.56                                         | 2,446                    | 4,428                    |
|        | platinum   | Pt     | 78               | 195.084        | 21.45                                         | 1,768                    | 3,825                    |
|        | gold       | Au     | 79               | 196.967        | ~19.3                                         | 1,064                    | 2,856                    |


## Some properties of the transition elements

iv) The first of the inner transition series includes the elements from Cerium (symbol Ce, atomic number 58) to Lutetium (symbol Lu, atomic number 71). These elements are called the lanthanoids (or lanthanides) because the chemistry of each closely similar that of lanthanum. Lanthanum itself is often regarded as one of the lanthanoids.

v) The actinoid series consists of 15 elements from Actinium (symbol Ac, atomic number 89) to Lawrencium (symbol Lr, atomic number 103). These inner transition series are rare-earth elements and actinoid elements.

## Theories of transition-metal complexes

As has been noted, partially filled d <u>orbitals</u> account for the characteristic chemical properties of the regular transition metals, both as a class and as individuals. The interpretation and understanding of the chemical and physical properties of these elements thus depends heavily upon the description of these  $d^n$  (n is one or more but fewer than ten) electron configurations. The five orbitals of each d shell, regardless of principal <u>quantum number</u>, have the shapes and <u>designations</u> shown in the Figure. The radial extent or size changes with principal <u>quantum</u> number, but the shapes are characteristics for all the sets

