The genetic code

- A doublet code based on pairs of the four possible bases, A, C, G, and U, has 4²=16, an insufficient number to encode the 20 amino acids.
- A triplet code of four bases has 4³ =64 possible code words, more than enough for the task.
- A group of three bases codes for one amino acid.
- The code is not overlapping
- The base sequence is read from a fixed starting point without punctuation.
- The genetic code is degenerate. With the exception of Met and Trp, every amino acid is coded by more than one codon. Several—Arg, Leu, and Ser—are represented by six different codons. Codons coding for the same amino acid are called synonymous codons.
- All the codons have meaning. Of the 64 codons, 61 specify particular amino acids. The remaining 3—UAA, UAG, and UGA—specify no amino acid and thus they are nonsense codons. Nonsense codons serve as termination codons; they are "stop" signals indicating that the end of the protein has been reached.

- The genetic code is unambiguous. Each of the 61 "sense" codons encodes only one amino acid. .
- The genetic code is "universal." Although certain minor exceptions in codon usage occur, the more striking feature of the code is its universality: Codon assignments are virtually the same throughout all organisms—archaea, bacteria, and eukaryotes. This conformity means that all extant organisms use the same genetic code, providing strong evidence that they all evolved from a common primordial ancestor.
- Codons representing the same amino acid or chemically similar amino acids tend to be similar in sequence. Often the third base in a codon is irrelevant, so, for example, all four codons in the GGX family specify Gly, and the UCX family specifies Ser . This feature is known as third-base degeneracy. Note also that codons with a pyrimidine as second base likely encode amino acids with hydrophobic side chains, and codons with a purine in the second-base position typically specify polar or charged amino acids. The two negatively charged amino acids, Asp and Glu, are encoded by GAX codons; GA–pyrimidine gives Asp and GA–purine specifies Glu. The consequence of these similarities is that mutations are less likely to be harmful because single base changes in a codon will result either in no change or in a substitution with an amino acid similar to the original amino acid

First Position	Second			Third Position (3'-end)	Third-Base Degeneracy Is Color-Coded			
(5'-end)	Position				Third-Base	Third Bases with Same		
	U	С	А	G		Relationship	Meaning	Number of Codor
	UUU Phe	UCU Ser	UAU Tyr	UGU Cys	U	Third base	U, C, A, G	32 (8 families)
U	UUC Phe	UCC Ser	UAC Tyr	UGC Cys	С	irrelevant Purines Pyrimidines	A or G	12 (6 pairs)
	UUA Leu	UCA Ser	UAA Stop	UGA Stop	А			
	UUG Leu	UCG Ser	UAG Stop	UGG Trp	G		U or C	14 (7 pairs)
С	CUU Leu	CCU Pro	CAU His	CGU Arg	U	Three out of four Unique definitions	U, C, A	3 (AUX = Ile)
	CUC Leu	CCC Pro	CAC His	CGC Arg	С			
	CUA Leu	CCA Pro	CAA Gln	CGA Arg	А		G only	2 (AUG = Me) (UGG = Tr
	CUG Leu	CCG Pro	CAG Gln	CGG Arg	G			
А	AUU Ile	ACU Thr	AAU Asn	AGU Ser	U	Unique definition	A only	1 (IICA - St)
	AUC Ile	ACC Thr	AAC Asn	AGC Ser	С		A only	1 (UGA = Ste
	AUA Ile	ACA Thr	AAA Lys	AGA Arg	А			
	AUG Met*	ACG Thr	AAG Lys	AGG Arg	G			
G	GUU Val	GCU Ala	GAU Asp	GGU Gly	U			
	GUC Val	GCC Ala	GAC Asp	GGC Gly	С			
	GUA Val	GCA Ala	GAA Glu	GGA Gly	А			
	GUG Val	GCG Ala	GAG Glu	GGG Gly	G			

Amino acid match with t-RNA

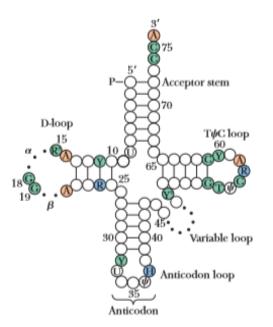
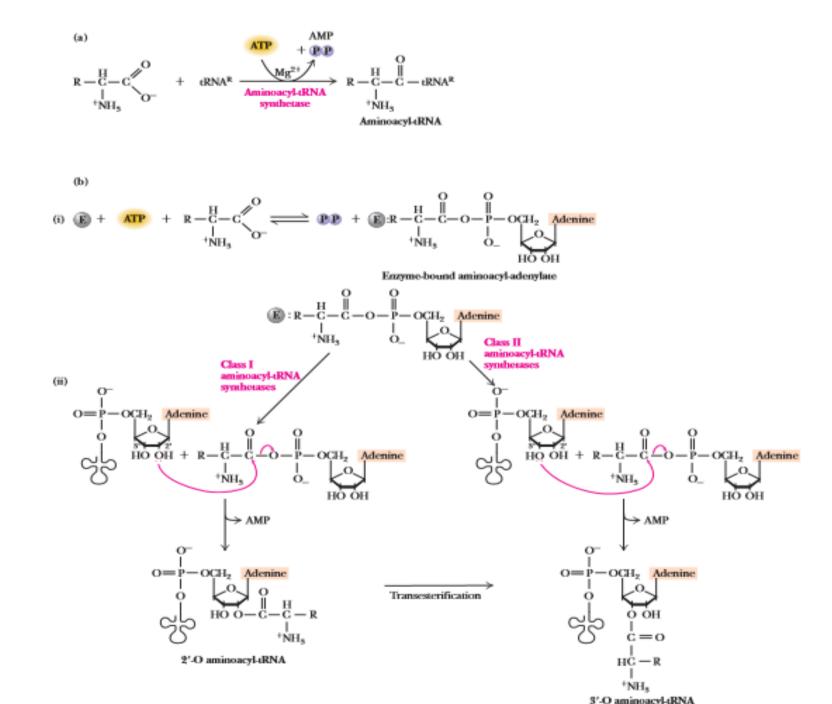
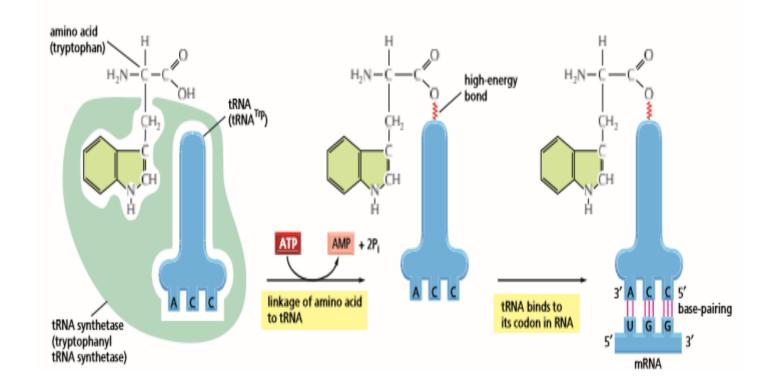
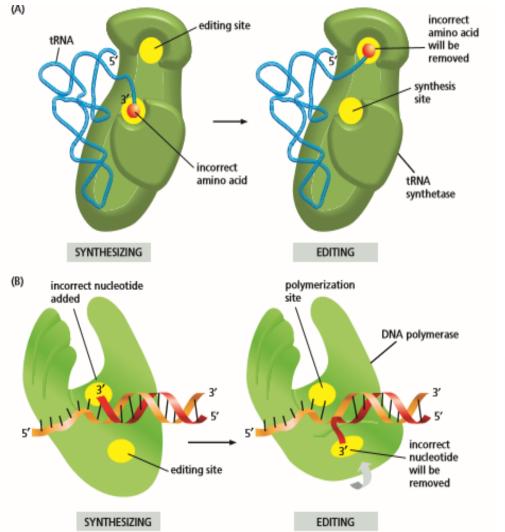





FIGURE 30.1 Generalized secondary structure of tRNA molecules. Circles represent nucleotides in the tRNA sequence. The numbers given indicate the standardized numbering system for tRNAs (which differ in total number of nucleotides). Dots indicate places where the number of nucleotides may vary in different tRNA species. All tRNAs have the invariant 3-base sequence

- Codon recognition is achieved by aminoacyl-tRNAs. In order for accurate translation to occur, the appropriate aminoacyl-tRNA must "read" the codon through base pairing via its anticodon loop. The amino acid is passively chauffeured by its tRNA and becomes inserted into a growing peptide chain following codon–anticodon recognition between the mRNA and tRNA.
- An aminoacyl-tRNA synthetase must discriminate between the 20 amino acids and the many tRNAs and uniquely picks out its proper substrates— one specific amino acid and the tRNA(s).
- The appropriate tRNAs are those having anticodons that can base-pair with the codons specifying the particular amino acid.
- Cells have 20 different aminoacyl-tRNA synthetases, one for each amino acid. Each of these enzymes catalyzes ATP-dependent attachment of its specific amino acid to the 3-end of its cognate tRNA molecules .
- The aminoacyl-tRNA synthetase reaction serves two purposes:
- 1. It activates the amino acid so that it will readily react to form a peptide bond.
- 2. It bridges the information gap between amino acids and codons.
- aminoacyl-tRNA synthetase can discriminate between two t-RNA.

Figure 6–59 Hydrolytic editing. (A) tRNA synthetases remove their own coupling errors through hydrolytic editing of incorrectly attached amino acids. As described in the text, the correct amino acid is rejected by the editing site. (B) The error-correction process performed by DNA polymerase shows some similarities; however, it differs in so far as the removal process depends strongly on a mispairing with the template (see Figure 5–8).