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Homogeneous Functions 

A function in which every term is of the same degree is called homogeneous 

function. 

A function  f( x,y) is said to be homogeneous of degree n if the equation 
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be a function of x and y  

Obviously each term of the function f(x,y) is of degree n. Thus f(x,y) is a 

homogeneous functions of degree n is x and y.  


















































x

y
Fx

x

y
a

x

y
a

x

y
aaxyxf n

n

n

n ................),(

2

210

 























































y

x
ya

y

x
a

y

x
a

y

x
ayyxf n

n

nnn

n ................),(

2

2

1

10
 



 Thus, every homogeneous functions of degree n in x and y can be written as either 
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Example 1: The function 2
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Example 2: The function f( x,y) = 2 x + y is homogeneous of degree 1, since  
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Euler’s Theorem on Homogeneous Function 

If u= f (x,y) is a homogeneous functions of degree n is x and y.  

Then  
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If u is homogeneous function in x, y and z of degree n, then 
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An Important Deduction From Euler’s Theorem 

Theorem If )( nFu  where nF  is a homogeneous functions of degree n, and suppose 

that this relation implies ),(ufFn  then  
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Solution We have  
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This  f (x,y) is a homogeneous functions of degree 1, then by Euler theorem  
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