Subject Name: Mathematic II
Subject Code: BCA 2005
Topic: Extrema of Function's of Two Variables

## By

Dr. RITESH AGRWAL
Department of Computer Application
UIET, CSJM University, Kanpur

Maxima and Minima for functions of two variables
Let $f(x, y)$ be a function with two independent variables $x$ and $y$ and let $f(x, y)$ be continuous for all values of x and y in the small neighborhood of $(\mathrm{a}, \mathrm{b})$

## Working Rule

1. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
2. Solve the equation $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$ for x and y . Then pairs of values of x and
$y$. let $(a, b)$ be one of these pairs.
3. Find $r=\left(\frac{\partial^{2} f}{\partial x^{2}}\right)_{(a, b)} ; s=\left(\frac{\partial^{2} f}{\partial x \partial y}\right)_{(a, b)}$ and $t=\left(\frac{\partial^{2} f}{\partial y^{2}}\right)_{(a, b)}$ and calculate $r t-s^{2}$.
4. If $r t-s^{2}$ is positive and $r>0$, then $\mathrm{f}(\mathrm{x}, \mathrm{y})$ has a minimum at $(\mathrm{a}, \mathrm{b})$;

If $r t-s^{2}$ is positive and $r<0$, then $\mathrm{f}(\mathrm{x}, \mathrm{y})$ has a maximum at $(\mathrm{a}, \mathrm{b})$;
If $r t-s^{2}$ is negative, then $\mathrm{f}(\mathrm{x}, \mathrm{y})$ has neither maximum nor minimum at $(\mathrm{a}, \mathrm{b})$;
If $r t-s^{2}=0$ is zero, then no conclusion can be drawn and further investigation will be required.
Q. Discuss maximum or minimum values or saddle point of the function

$$
f(x, y)=x^{3}-4 x y+2 y^{2}
$$

Solution Since $\frac{\partial f}{\partial x}=3 x^{2}-4 y$ and $\frac{\partial f}{\partial y}=-4 x+4 y$. we have, for maxima and minima of $f$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=0 \\
& 3 x^{2}-4 y=0 \\
& -4 x+4 y=0
\end{aligned}
$$

Solving these equations, we have
$(0,0)$ and $\left(\frac{4}{3}, \frac{4}{3}\right)$ are critical points.
Now $r=\left(\frac{\partial^{2} f}{\partial x^{2}}\right)=6 x ; s=\left(\frac{\partial^{2} f}{\partial x \partial y}\right)=-4$ and $t=\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=4$
Thus, at $(0,0)$

$$
r t-s^{2}=0 \times(-4)-(-4)^{2}=-16<0
$$

Hence, we conclude that $(0,0)$ is a saddle point of $f$.
Furthermore, at $\left(\frac{4}{3}, \frac{4}{3}\right)$
$\mathrm{r}=8, \mathrm{~s}=-4, \mathrm{t}=4$
$r t-s^{2}=8 \times(4)-(4)^{2}=16>0$
And r > 0 .
Hence, we conclude that $\left(\frac{4}{3}, \frac{4}{3}\right)$ function $f$ has minimum value. Thus, at $\left(\frac{4}{3}, \frac{4}{3}\right)$ the minima value of $f_{\text {min }}\left(\frac{4}{3}, \frac{4}{3}\right)=-\frac{32}{27}$
Q. Discuss maximum or minimum values or saddle point of the function
$f(x, y)=x^{2}+y^{2}+\frac{2}{x}+\frac{2}{y}$
Solution Since $\frac{\partial f}{\partial x}=2 x-\frac{2}{x^{2}}$ and $\frac{\partial f}{\partial y}=2 y-\frac{2}{y^{2}}$ we have, for maxima and minima of $f$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=0 \\
& 2 x-\frac{2}{x^{2}}=0 \\
& x=\frac{1}{x^{2}} \\
& 2 y-\frac{2}{y^{2}}=0
\end{aligned}
$$

Solving this equation, we have
$(1,1)$ is a critical points.
Now $r=\left(\frac{\partial^{2} f}{\partial x^{2}}\right)=2+\frac{4}{x^{3}} ; s=\left(\frac{\partial^{2} f}{\partial x \partial y}\right)=0$ and $t=\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=2+\frac{4}{y^{3}}$
Thus, at (1,1)
$r t-s^{2}=6 \times(6)-0=36>0$
and $\mathrm{r}=6>0$.

Hence, we conclude that $(1,1)$ function $f$ has minimum value. Thus, at $(1,1)$ the minima value of $f_{\text {min }}(1,1)=6$

## Related Problems

Q1. Discuss maximum or minimum values of the function
$f(x, y)=x y+\frac{a^{3}}{x}+\frac{a^{3}}{y}$
Q2. Discuss maximum or minimum values of the function
$f(x, y)=x^{3}+y^{3}-3 a x y$

Q3. Discuss maximum or minimum values of the function

$$
f(x, y)=x y(1-x-y)
$$

## Referential Books:

1. H.K. Dass, "Advanced Engineering Mathematics", S. Chand \& Co., 9th Revised Ed
2. A.R. Vasishtha, "Differential Calculus", Krishna Pra. Media (P) Ltd.
3. V. Kumar, "Differential Calculus", Epsilon Publishing House
