Subject Name: Mathematic II Subject Code: BCA 2005 Topic: Extrema of Function's of Two Variables

By

Dr. RITESH AGRWAL Department of Computer Application UIET, CSJM University, Kanpur Maxima and Minima for functions of two variables

Let f(x,y) be a function with two independent variables x and y and let f(x,y) be continuous for all values of x and y in the small neighborhood of (a,b)

Working Rule

1. Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$.

2. Solve the equation $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ for x and y. Then pairs of values of x and

y. let (a, b) be one of these pairs.

3. Find
$$r = \left(\frac{\partial^2 f}{\partial x^2}\right)_{(a,b)}$$
; $s = \left(\frac{\partial^2 f}{\partial x \partial y}\right)_{(a,b)}$ and $t = \left(\frac{\partial^2 f}{\partial y^2}\right)_{(a,b)}$ and calculate $rt - s^2$.

4. If $rt - s^2$ is positive and r > 0, then f (x,y) has a minimum at (a,b);

If $rt - s^2$ is positive an<u>d</u> r < 0, then f (x,y) has a maximum at (a,b);

If $rt - s^2$ is negative, then f (x,y) has neither maximum nor minimum at (a,b);

If $rt - s^2 = 0$ is zero, then no conclusion can be drawn and further investigation will be required.

Q. Discuss maximum or minimum values or saddle point of the function

$$f(x, y) = x^3 - 4xy + 2y^2$$

Solution Since $\frac{\partial f}{\partial x} = 3x^2 - 4y$ and $\frac{\partial f}{\partial y} = -4x + 4y$. we have, for maxima and minima

of f

$$\frac{\partial f}{\partial x} = 0, \ \frac{\partial f}{\partial y} = 0$$
$$3x^2 - 4y = 0,$$
$$-4x + 4y = 0$$

Solving these equations, we have

(0, 0) and $(\frac{4}{3}, \frac{4}{3})$ are critical points.

Now
$$r = \left(\frac{\partial^2 f}{\partial x^2}\right) = 6x$$
; $s = \left(\frac{\partial^2 f}{\partial x \partial y}\right) = -4$ and $t = \left(\frac{\partial^2 f}{\partial y^2}\right) = 4$

Thus, at (0, 0)

$$rt - s^{2} = 0 \times (-4) - (-4)^{2} = -16 < 0$$

Hence, we conclude that (0, 0) is a saddle point of f.

Furthermore, at $(\frac{4}{3}, \frac{4}{3})$ r = 8, s = -4, t = 4 $rt - s^2 = 8 \times (4) - (4)^2 = 16 > 0$

And r > 0.

Hence, we conclude that $(\frac{4}{3}, \frac{4}{3})$ function f has minimum value. Thus, at $(\frac{4}{3}, \frac{4}{3})$ the minima value of $f_{\min}(\frac{4}{3}, \frac{4}{3}) = -\frac{32}{27}$

Q. Discuss maximum or minimum values or saddle point of the function

$$f(x, y) = x^{2} + y^{2} + \frac{2}{x} + \frac{2}{y}$$

Solution Since $\frac{\partial f}{\partial x} = 2x - \frac{2}{x^2}$ and $\frac{\partial f}{\partial y} = 2y - \frac{2}{y^2}$ we have, for maxima and minima of

$$f$$

$$\frac{\partial f}{\partial x} = 0, \ \frac{\partial f}{\partial y} = 0$$

$$2x - \frac{2}{x^2} = 0,$$

$$x = \frac{1}{x^2}$$

$$2y - \frac{2}{y^2} = 0$$

Solving this equation, we have

(1, 1) is a critical points.

Now
$$r = \left(\frac{\partial^2 f}{\partial x^2}\right) = 2 + \frac{4}{x^3}$$
; $s = \left(\frac{\partial^2 f}{\partial x \partial y}\right) = 0$ and $t = \left(\frac{\partial^2 f}{\partial y^2}\right) = 2 + \frac{4}{y^3}$

Thus, at (1,1)

$$rt - s^2 = 6 \times (6) - 0 = 36 > 0$$

and r = 6 > 0.

Hence, we conclude that (1,1) function f has minimum value. Thus, at (1,1) the

minima value of $f_{\min}(1,1) = 6$

Related Problems

Q1. Discuss maximum or minimum values of the function

$$f(x, y) = xy + \frac{a^3}{x} + \frac{a^3}{y}$$

Q2. Discuss maximum or minimum values of the function

$$f(x, y) = x^3 + y^3 - 3axy$$

Q3. Discuss maximum or minimum values of the function

$$f(x, y) = xy(1 - x - y)$$

Referential Books:

- 1. H.K. Dass, "Advanced Engineering Mathematics", S. Chand & Co., 9th Revised Ed
- 2. A.R. Vasishtha, "Differential Calculus", Krishna Pra. Media (P) Ltd.
- 3. V. Kumar, "Differential Calculus", Epsilon Publishing House