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Maxima and Minima for functions of two variables 

 Let f(x,y) be a function with two independent variables x and y and let f(x,y) be 

continuous for all values of x and y in the small neighborhood of (a,b)  
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y. let (a, b) be one of these pairs. 
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=  and calculate .2srt −  

4. If 2srt −  is positive and ,0r then f (x,y) has a minimum at (a,b); 

If 2srt −  is positive and ,0r then f (x,y) has a maximum at (a,b); 

If 2srt −  is negative, then f (x,y) has neither maximum nor minimum at (a,b); 

If 02 =− srt  is zero, then no conclusion can be drawn and further investigation will 

be required. 

Q. Discuss maximum or minimum values or saddle point of the function 
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Solving these equations, we have  
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Thus, at (0, 0)  
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Hence, we conclude that (0, 0) is a saddle point of f.  
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Q. Discuss maximum or minimum values or saddle point of the function 
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Solving this equation, we have  

(1, 1) is a critical points. 

Now 
32

22

32

2 4
20;

4
2

yy

f
tand

yx

f
s

xx

f
r +=












==












=+=












=  

Thus, at (1,1)  
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and r =6 > 0.  

Hence, we conclude that )1,1( function f has minimum value. Thus, at )1,1(  the 

minima value of 6)1,1(min =f   

 



Related Problems  

Q1. Discuss maximum or minimum values of the function 
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Q2. Discuss maximum or minimum values of the function 
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Q3. Discuss maximum or minimum values of the function 

)1(),( yxxyyxf −−=  

 

 

Referential Books: 

1. H.K. Dass, “Advanced Engineering Mathematics”, S. Chand & Co., 9th Revised Ed  
2. A.R. Vasishtha, “Differential Calculus”, Krishna Pra. Media (P) Ltd. 
3. V. Kumar, “Differential Calculus”, Epsilon Publishing House 

 


