$$
\begin{gathered}
\text { Module - } 1 \\
\text { Subject : - Mathematics } \\
\text { Class \& Year:- M.A./ M.Sc. -IstYear } \\
\text { Topic :- Real Analysis } \\
\text { (Riemann - Stieltjes Integral) } \\
\text { By }
\end{gathered}
$$

Name :- Dr. Meera Srivastava

Designation :- Associate Professor\& H.O.D.

Department :- Mathematics

University / College :- D.A-V (P.G.) College, Kanpur (Affiliated to C.S.J.M. University, Kanpur)

Email - id :- dr.meerasrivastava05@ gmail.com
H.O.D. Name:- Dr. Meera Srivastava (H.O.D.)

Principal Name: Dr. Amit Kumar Srivastava (Principal)

(Dr. Meera Srivastava)
(Signature of content Developer)

SELF DECLARATION

" The content is exclusively meant for academic purpose and for enhancing teaching and learning. Any other use for economic /commercial purpose is strictly prohibited. The users of the content shall not distribute, disseminate or share it with anyone else and its use is restricted to advancement of individual knowledge. The information"

Dr. Meera Srivastava
(Content Developer)

Associate Professor \& H.O.D.

Department of Mathematics

D.A-V College,Kanpur

THE RIEMANN - STIELTJES INTEGRAL

LECTURE -1

Today we will discuss about the Riemann Stieltjes Integral and some of its properties.

We know that the integral calculus is the outcome of an attempt to solve the problems of finding the area of the plane bounded by curves, in this process it is necessary to divide area into a very large number of small elements and then to obtain the limit of the sum of all these elements when each is infinitesimally small and their number is indefinitely great. Afterwards it was seen that the process of integration could be viewed as a process inverse of differential.

Riemann was the first scholar to give a satisfactory, rigorous arithmetic definition of the integral of a bounded function and also established a necessary \& sufficient condition for existence of the definite integral of function.

Definition of Riemann Integral : Consider a bounded real valued function $f(x)$ defined on closed interval $[a, b]=1 . B y$ a partition of I, we mean a finite set of real number $P=\left\{x_{0}, x_{1}, x_{2}-\cdots-x_{n}\right\}$ such that $a=x_{0}<x_{1}<x_{2}---, x_{n}=b$ The closed interval $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right]----------\left[x_{n-1}, x_{n}\right]$ constitute the segments of partition. we denote
the sub-interval $\left[\mathrm{x}_{\mathrm{r}-1}, \mathrm{x}_{\mathrm{r}}\right]$ and its length $\mathrm{x}_{\mathrm{r}}-\mathrm{x}_{\mathrm{r}-1}$ by δ_{r}. the greatest of the lengths of sub interval is called norm denoted by II P II = Max. $\left\{\delta_{r,}: r=1,2,-------n\right\}$.

As we have already studied about lower, upper bound, sup \& inf. of function in B.Sc. $3_{r d}$ Year,so let $m \& M$ be the inf. \& sup of bounded function $f(x)$ of $[a, b]$ respectively. Now form the sum

$$
s=L(P, f)=\sum_{r=1}^{n} m_{r} \delta_{r,} \quad S=U(P, f)=\sum_{r=1}^{n} M_{r} \delta_{r}, \quad \text { The sum } s \text { and } S \text { are }
$$

called Darboux sums. They are also called the lower \& upper Riemann sum respectively, evidently $s \leq S$ and $r=1,2,3$-----n

We have $m \leq m_{r} \leq M_{r} \leq M$ therefore $\sum_{r=1}^{n} m \delta_{r} \leq \sum_{r=1}^{n} m_{r} \delta_{r} \leq \sum_{r=1}^{n} M_{r} \delta_{r} \leq \sum_{r=1}^{n} M \delta_{r}$ i.e. $m(\mathbf{b}-\mathbf{a}) \leq \mathrm{L}(\mathbf{P}, \mathbf{f}) \leq \mathbf{U}(\mathbf{P}, \mathbf{f}) \leq \mathbf{M}(\mathbf{b}-\mathrm{a})$ Now consider all possible partition of $[\mathrm{a}, \mathrm{b}]$. Now we define upper integral \& lower integral as follows
$-\int_{a}^{b} f(x) d x=\operatorname{inf.}\{U(P, f): P$ is a partition of $[a, b]\}$ and $\int^{b}{ }^{b} f(x) d x=\operatorname{Sup}\{L(P, f): P$ is a partition of [a,b]\}

If $\int_{a}{ }^{b} f(x) d x={ }_{-} \int_{a}^{b} f(x) d x=\int^{b}{ }_{a} f(x) d x$ then we say that f is Riemann integrable or R-integrable or integrable over [a,b] denoted by (R)[a,b], or simply $\int^{b}{ }_{a} f(x) d x$ Now we will study about Riemann-Stieltjes integral which is the generalized concept of Riemann Integral given by Thomas Joanes Stieltjes (1856 - 1894).

Definition of Riemann Stieltjes Integral : Consider a bounded real valued function $f(x)$ defined on closed interval $[a, b]=I . B y$ a partition of I, we mean a finite set of real number $P=\left\{x_{0}, x_{1}, x_{2}-\cdots------x_{n}\right\}$ such that $a=x_{0}<x_{1}<x_{2}---, x_{n}=b$.The closed interval $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right]$----------[$\left.x_{n-1}, x_{n}\right]$ constitute the segments of the partition. we denote the sub-interval $\left[\mathrm{X}_{\mathrm{r}-1}, \mathrm{x}_{\mathrm{r}}\right]$ and its length $\mathrm{x}_{\mathrm{r}}-\mathrm{x}_{\mathrm{r}-1}$ by δ_{r}. the greatest of the lengths of sub interval is called norm denoted by II P II= $\max \left\{\delta_{r}:: \quad r=1,2,-------n\right\}$.

As we have already studied about lower, upper bound, sup \& inf. of function ,so let $\mathbf{m} \& \mathrm{M}$ be the inf. \& sup of bounded function $f(x)$ of $[a, b]$ respectively. Let $m_{r}=\inf .\left\{f(x): x \in\left[x_{r-1}, x_{r}\right]\right\}$ and $M_{r}=\operatorname{Sup} .\left\{f(x): x \in\left[x_{r-1}, x_{r}\right]\right\}$. Let g be monotonically non decreasing function on $[a, b]$, write $\delta g_{r}=g\left(x_{r}\right)-g\left(x_{r-1}\right)$.then $\delta g_{r} \geq 0$.

Now form the sum

$$
s=L(f, g, P)=\sum_{r=1}^{n} m_{r} \delta g_{r} S=U(f, g, P)=\sum_{r=1}^{n} \mathbf{M}_{r} \delta g_{r} \text {, These sums } s \text { and } S \text { are }
$$ respectively called lower \& upper Riemann -Stieltjes sums .evidently $\mathrm{s} \leq \mathrm{S}$ anđ $r=1,2,3$--n

We have $m \leq m_{r} \leq M_{r} \leq M$ therefore $\sum_{r=1}^{n} m_{r} \delta g_{r} \leq \sum_{r=1}^{n} m_{r} \delta g_{r} \leq \sum n_{r=1} M_{r} \delta g_{r} \leq$
$\sum_{r=1}^{n} M \delta g_{r}$ i.e. $m(b-a) \leq L(P, f, g) \leq U(P) \leq M(b-a)$ Now consider all possible partition of $[a, b]$,now we define upper \& lower Riemann -Stieltjes integral as follows $\int_{a}^{-}{ }^{b} f(x) d g=i n f .\{U(P, f, g):$,$P is a partition of [a, b]\}$ and $\int_{-} \int^{b} f(x) d g=$ $\operatorname{Sup}\{L(P, f, g): P$ is a partition of $[a, b]\}$

If $\int_{a}{ }^{b} f(x) d g=\int^{b}{ }_{a} f(x) d g=\int_{a}^{b} f(x) d g$ then we say that the integral is Riemannstieltjes Integral denoted by $R(g)$ or $R-S(g)$, or simply $=\int^{b}{ }^{b} f(x) d g$ over $[a, b]$, the function f is called the integrand $\& \mathrm{~g}$ is called integrator.

Riemann -Stieltjes Integral as a limit of sums : Let f be a bounded and g be monotonically increasing function on $[a, b]$.Let $P=\left\{a=x_{0}, x_{1}, x_{2}------x_{n-1} x_{n},=b\right\} b e a$ partition of $[\mathrm{a}, \mathrm{b}]$ and let $\mathrm{t}_{\mathrm{i}} \in\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right]$, then we define the R-S sums of f relative to g on $[\mathrm{a}, \mathrm{b}]$ as $\mathbf{S}(\mathbf{P}, \mathbf{f}, \mathbf{g})=\sum_{\mathrm{i}=\mathbf{1}}^{\mathrm{n}} \mathbf{f}\left(\mathbf{t}_{\mathrm{i}}\right) \boldsymbol{\delta g i}$. The $\mathbf{s u m} \mathbf{S}(\mathbf{P}, \mathbf{f}, \mathbf{g})$ is said to be convergent to a limit , as $\|\mathbf{P}\| \rightarrow \mathbf{0}$ and in this case $\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{fdg}=\mathbf{S}(\mathrm{P}, \mathrm{f}, \mathrm{g})=\sum^{\mathrm{n}}{ }_{i=1} \mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right) \boldsymbol{\delta g i}$

Refinement of a partition : A partition P^{*} is said to be refinement of P if $P \subset P^{*}$. In this case we say that P^{*} is finer than P i.e. P^{*} contains at least one point more than P . If P^{*} is the common refinement of the partitions P_{1} \& P_{2} then $\mathrm{P}^{*}=\mathrm{P}_{1} \cup \mathrm{P}_{2}$.

Theorem 1: The lower integral can not exceed upper integral.

Proof : let $P_{1} \& P_{2}$ be two partition of $[a, b]$ i.e. $P_{1}, P_{2} \in P[a, b]$ then $\left.L\left[P_{1}, f, g\right] \leq L P^{*}, f, g\right]$ $\leq U\left[P^{*}, f, g\right] \leq U\left[P_{2}, f, g\right]$, then we have $L\left[P_{1}, f, g\right] \leq U\left[P_{2}, f, g\right] \cdots-----(1)$ now if we kept P_{2} fixed and take Sup. Overall P_{1}, then from equation (1) we have $-\int f(x) d g \leq$ $\left[U\left(P_{2}, f, g\right)\right]$. ------(2) The theorem follows by taking the inf. over all P_{2} in (2)by definition of Lower \& upper integral.

Theorem 2 : If P^{*} is the common refinement of P then

1) $L[P, f, g] \leq L\left[P P^{*}, f, g\right]$
2) $U\left[P^{*}, f, g\right] \leq U[P, f, g]$

Proof : To prove (1) suppose first that P^{*} contains just one point more than P . Let this extra point be y, and suppose $x_{i-1}<y<x_{i}$, where $x_{i-1} \& x_{i}$ are two consecutive points of P. Let $w_{1}=\operatorname{inf.} f(x)$ in $\left(x_{i-1} \leq x \leq y\right) \& w_{2}=\inf . f(x)$ in $\left(y \leq x \leq x_{i}\right)$ clearly

$$
\begin{aligned}
& w_{1} \& w_{2} \geq m_{i} \text { because } m_{i}=\text { inf. } f(x) \text { in }\left(x_{i-1} \leq x \leq x_{i}\right) \text {, hence } \\
& L\left[P^{*}, f, g\right]-L[P, f, g]=w_{1}\left[g(y)-g\left(x_{i-1}\right)\right]+w_{2}\left[g\left(x_{i}\right)-g(y)\right]-m_{i}\left[g\left(x_{i}\right)-g\left(x_{i-1}\right)\right] \\
& =\left(w_{1}-m_{i}\right)\left[g(y)-g\left(x_{i-1}\right)\right]+\left(w_{2}-m_{i}\right)\left[g\left(x_{i}\right)-g(y)\right] \geq 0 \text {, hence we have the result. (1) }
\end{aligned}
$$

To prove (2) suppose first that P^{*} contains just one point more than P . Let this extra point be y , and suppose $\mathrm{x}_{\mathrm{i}-1}<\mathrm{y}<\mathrm{x}_{\mathrm{i}}$ where $\mathrm{x}_{\mathrm{i}-1} \& \mathrm{x}_{\mathrm{i}}$ are two consecutive points of P. Let $u_{1}=\operatorname{Sup} . f(x)$ in $\left(x_{i-1} \leq x \leq y\right) \& u_{2}=\operatorname{Sup} . f(x)$ in $\left(y \leq x \leq x_{i}\right)$ clearly
$u_{1} \& u_{2} \leq M_{i}$ as $M_{i}=\operatorname{Sup} . f(x)$ in $\left(x_{i-1} \leq x \leq x_{i}\right)$, hence
$U\left[P^{*}, f, g\right]-U[P, f, g]=u_{1}\left[g(y)-g\left(x_{i-1}\right)\right]+u_{2}\left[g\left(x_{i}\right)-g(y)\right]-M_{i}\left[g\left(x_{i}\right)-g\left(x_{i-1}\right]\right.$
$=\left(u_{1}-M_{i}\right)\left[g(y)-g\left(x_{i-1}\right)\right]+\left(u_{2}-M_{1}\right)\left[g\left(x_{i}\right)-g(y)\right] \leq 0$, hence we have the result. (2)

Theorem 3: let $\mathrm{f} \in \mathrm{R}(\mathrm{g})$ on $[\mathrm{a}, \mathrm{b}]$ if and only if $\forall \varepsilon>0$ 马 a partition P of $[\mathrm{a}, \mathrm{b}]$ such that $U[P, f, g]-L[P, f, g]<\varepsilon$

Proof: For every partition P we have $L[P, f, g] \leq \int_{-}{ }^{b} f(x) d g \leq^{-} \int_{a}{ }^{b} f(x) d g \leq U[P, f, g]$, thus (1) implies by using definition of R-S integral $0 \leq \int_{a}^{-} f(x) d g-\int_{a}^{b} f(x)<\varepsilon$, hence if (1) can be satisfied for every $\varepsilon>0$, we have ${ }^{-} \int_{a}^{b} f(x) d g=\int^{b}{ }_{a} f(x) d g$ i.e. $f \in R(g)$.

Conversely, suppose $f \in R(g)$ and let $\varepsilon>0$, be given then there exists partition $P_{1} \& P_{2}$ such that $U\left[P_{2}, f, g\right]-\int^{b}{ }^{b} f(x) d g<\varepsilon / 2------(2)$ and

$$
\begin{equation*}
\int^{\mathrm{b}}{ }_{\mathrm{a}} f(\mathrm{x}) \mathrm{dg}-\mathrm{L}\left[\mathrm{P}_{1}, \mathrm{f}, \mathrm{~g}\right]<\varepsilon / 2- \tag{3}
\end{equation*}
$$

We choose P to be common refinement of $P_{1} \& P_{2}$.Then Th. 2 together with equations (2) \& (3) show that $U[P, f, g] \leq U\left[P_{2}, f, g\right]<\int^{b}{ }_{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dg}+\varepsilon / 2<\mathrm{L}\left[\mathrm{P}_{1}, \mathrm{f}, \mathrm{g}\right]+\varepsilon \leq$ $L[P, f, g]+\varepsilon .----(4)$ thus from equation (4) we get the result $U[P, f, g]-L[P, f, g]<\varepsilon$.

LECTURE -2

Now we will study some more properties\& Theorems on Riemann -Stieltjes

Integral

Theorem 4 : 1) If f is continuous and g be monotonic non- decreasing on $[a, b]$ then $f \in R(g)$ on $[a, b]$.
2) If $P=\left\{a=x_{0}, x_{1}, x_{2}-\cdots---x_{n-1} x_{n}=b\right\}$ and s_{i}, t_{i} are arbitrary points in $\left[x_{i-1}, x_{i}\right]$ then

$$
\sum_{r=1}^{n}\left|f\left(s_{i}\right)-f\left(t_{i}\right)\right| \delta g_{i}<\varepsilon
$$

3) Moreover, given $\varepsilon>0$, there exist $\delta>0$ such that $\left|\sum_{r=1}^{n}{ }_{r=1}\left(t_{r}\right) \delta g_{i}-\int_{a}^{b} f(x) d g\right|<\varepsilon$

Proof : 1) Let $\varepsilon>0$ be given. Choose $\eta>0$ so that $[g(b)-g(a)] \eta<\varepsilon$, since f is uniformly continuous on $[a, b]$, there exists $a \delta>0$ such that

$$
|f(x)-f(t)|<\eta---------(1) \text {, if } x, t \in[a, b] \text {, and }|x-t|<\delta
$$

If P is any partition of $[a, b]$ then $M_{i}-m_{i} \leq \eta$ for $(I=1,2----n)$ and therefore $U[P, f, g]-L[P, f, g]=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \delta g_{i} \leq \eta \sum_{i=1}^{n} \delta g_{i}=\eta[g(b)-g(a)]<\varepsilon$ hence $f \in R(g)$ by Th3.
2) Since $s_{i}, t_{i} \in\left[x_{i-1}, x_{i}\right]$, hence $f\left(s_{i}\right) \& f\left(t_{i}\right)$ lie in $\left[m_{i}, M_{i}\right]$, so that
$\left\{\left|f\left(s_{i}\right)-f\left(t_{i}\right)\right|\right\} \delta g_{i} \leq M_{i}-m_{i} \Rightarrow \sum_{i=1}^{n}\left|f\left(s_{i}\right)-f\left(t_{i}\right)\right| \delta g_{i} \leq U[P, f, g]-L[P, f, g] \leq \varepsilon$.hence proved
3) : Since f is R-S Integrable relative to g, we have

$$
\begin{equation*}
-\int_{a}^{b} f(x) d g=\int_{-}^{b} f(x) d g=\int_{a}^{b} f(x) d g \tag{2}
\end{equation*}
$$

Now $\int_{a}^{-}{ }^{b} f(x) d g=\inf .\left[U(P, f, g) \Rightarrow \int_{a}{ }^{b} f(x) d g \leq[U(P, f, g)]\right.$ and ${ }^{-} \int_{a}^{b} f(x) d g \leq[U(P, f, g)]$

$$
\int_{-}^{b}{ }_{a}^{b} f(x) d g=\operatorname{Sup}[L(P, f, g)] \Rightarrow{ }_{-} \int_{a}^{b} f(x) d g \geq[L(P, f, g)] \text { whence we get }
$$

$$
\int_{a}{ }^{b} f(x) d g+\varepsilon>[U(P, f, g)] \text { and } \int_{-}^{b}{ }_{a} f(x) d g-\varepsilon<[L(P, f, g)] \text { by (2) we have }
$$

$$
\begin{equation*}
\left.\int_{a}^{b} f(x) d g-\varepsilon<[L(P, f, g)]<U(P, f, g)\right]<\int_{a}^{b} f(x) d g+\varepsilon- \tag{3}
\end{equation*}
$$

if $\mathrm{t}_{\mathrm{i}} \in\left[\mathrm{X}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right]$ be arbitrary then obviously $\mathrm{m}_{\mathrm{i}} \leq \mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right) \leq \mathrm{M}_{\mathrm{i}}$ and so

$$
\begin{equation*}
\left.\mathrm{L}(\mathrm{P}, \mathrm{f}, \mathrm{~g})] \leq \Sigma \mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right) \delta \mathrm{g}_{\mathrm{i}} \leq \mathrm{U}(\mathrm{P}, \mathrm{f}, \mathrm{~g})\right] . \tag{4}
\end{equation*}
$$

Combining (3) \& (4) we have $\int^{b}{ }_{a} f(x) d g-\varepsilon \leq \Sigma f\left(t_{i}\right) \delta g_{i} \leq \int_{a}{ }^{b} f(x) d g+\varepsilon$ or we have $-\varepsilon<\int^{b}{ }_{a} f(x) d g-\sum f\left(t_{i}\right) \delta g_{i}<\varepsilon$ ie. $\left|\sum^{n}{ }_{r=1} f\left(t_{r}\right) \delta g_{i}-\int^{b}{ }_{a} f(x) d g\right|<\varepsilon$ hence proved.

Theorem5 : Let f be monotonic and g be continuous and monotonic non decreasing on $[\mathrm{a}, \mathrm{b}]$ then $\mathrm{f} \in \mathrm{R}(\mathrm{g})$

Proof: Let $\varepsilon>0$.since g is continuous on $[\mathrm{a}, \mathrm{b}]$, it takes all the values between
$g(a) \& g(b)$,also g is monotonic non decreasing we can therefore choose a
partition P of $[a, b]$ such that $\delta g_{r}=g\left(x_{r}\right)-g\left(x_{r-1}\right)=\{g(b)-g(a)\} / n$, for $r=1,2,-----n$ let $m_{r}=\inf$.(f) \& $M_{r}=\operatorname{Sup}(f)$, also let f be monotonic non-decreasing then $m_{r}=f\left(x_{r-1}\right) \& M_{r}=f\left(x_{r}\right)$ Now
$U[P, f, g]-L[P, f, g]=\sum_{r=1}^{n}\left(M_{r}-m_{r}\right) \delta g_{r}=\sum_{r=1}^{n}\left\{f\left(x_{r}\right)-f\left(x_{r-1}\right)\{g(b)-g(a)\} / n\right.$ $=\{f(b)-f(a)\}\{g(b)-g(a)\} / n$ when n is sufficiently large then R.H.S.becomes arbitrary small then $U[P, f, g]-L[P, f, g]<\varepsilon$ i.e. $f \in R(g)$

Theorem6: If $f \in R(g)$ on $[a, b]$ then $c . f \in R(g)$ on $[a, b]$ where c is constant and

$$
\int^{b}{ }_{a} c f(x) d g=c \int_{a}^{b} f(x) d g
$$

Proof: Let $f \in R(g)$ on $[a, b]$ then given $\varepsilon>0$, there exist partition P of $[a, b]$ such that $U[P, f, g]-L[P, f, g]<\varepsilon$ and ${ }^{-} \int_{a}^{b} f(x) d g={ }_{-} \int^{b} f(x) d g=\int_{a}^{b} f(x) d g$
and $(c f)(x)=c f(x)$ and so $U[P, c . f, g]=c U[P, f, g] \& L[P, c f, g]=c L[P, f, g]$
Thus $U[P, c f, g]-L[P, c f, g]=c\{U[P, f, g]-L[P, f, g]\}<c \varepsilon=\varepsilon_{1}$, hence $c . f \in R(g)$ on [a, b] ie. $\int_{a}{ }^{b} c f(x) d g=\int_{-}^{b}{ }_{a} c f(x) d g=\int^{b}{ }_{a} c f(x) d g-------(3)$ Taking infimum of both sides of (2) for all partition P of $[a, b]$ we get $\int_{a}{ }^{b} c f(x) d g=c^{-} \int_{a}^{b} f(x) d g---(4)$ therefore $\int^{b}{ }_{a} c f(x) d g=c \int^{b} f(x) d g$, hence proved.

Theorem 7: If $f \in R(g)$ on $[a, b]$ then so is $|f|$ and $\left|\int^{b}{ }_{a} f(x) d g\right| \leq\left|\int^{b}{ }_{a}\right| f(x) \mid d g$ Proof: Since $f \in R(g)$ on $[a, b]$, f is bounded and $g(x)$ is monotonic non- decreasing on $[\mathrm{a}, \mathrm{b}]$. Also given $\varepsilon>0$ there exists partition P such that $\mathrm{U}[\mathrm{P}, \mathrm{f}, \mathrm{g}]-\mathrm{L}[\mathrm{P}, \mathrm{f}, \mathrm{g}]<\varepsilon$ ie. $\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \delta g_{i}<\varepsilon------(1)$ where $m_{i}=\inf (f) \& M_{i}=\operatorname{Sup}(f)$ in $\left[x_{i-1}, x_{i}\right]$, and
$\delta g_{i}=g\left(x_{i}\right)-g\left(x_{i-1}\right)$. Let $M_{i}^{\prime}=\operatorname{Sup}(|f|) \& m_{i}^{\prime}=\inf (|f|) \operatorname{in}\left[x_{i-1}, x_{i}\right]$, if $x, y \in\left[x_{i-1}, x_{i}\right]$ then $|\{|f(x)|-|f(y)|\}| \leq \mid f(x)-f(y)$, this suggests that $M_{i}^{\prime}-m_{i}^{\prime} \leq M_{i}-m_{i}$ so we have $\sum_{i=1}^{n} M_{i}^{\prime}-m_{i}^{\prime} \delta g_{i} \leq \sum_{i=1}^{n} M_{i}-m_{i} \delta g_{i}<\varepsilon$ so that $U[P,|f|, g]-L[P,|f|, g]<\varepsilon$ therefore $|f| \in R(g)$ Further $M_{i} \leq M_{i}^{\prime}$ or, $\left|\sum_{i=1}^{n} M_{i} \delta g_{i}\right| \leq \sum_{i=1}^{n} M_{i}^{\prime} \delta g_{i}$, making || $P \rightarrow 0$, we get $\left|\int^{b}{ }_{a} f(x) d g\right| \leq\left|\int^{b}{ }_{a}\right| f(x) \mid d g$

LECTURE-3

Today we will study some special properties of R-S Integral

Theorem8 : Suppose $f \in R(g) o n[a, b], m \leq f \leq M, \phi$ is continuous on $[m, M]$ and $h(x)=\phi(f(x)$ on $[a, b]$, then $h \in R(g)$ on $[a, b]$.

Proof: Choose $\boldsymbol{\varepsilon}>\mathbf{0}$.since ϕ is uniformly continuous on [m, M],there exists $\delta>0$ such that $\delta<\varepsilon$ and $|\phi(s)-\phi(t)|<\varepsilon$ if $|s-t| \leq \delta$ and $s, t \in[m, M]$. Since $f \in R(g)$ there is a partition P of $[a, b]$ such that $U(P, f, g)-L(P, f, g)<\delta^{2}$

Let m_{i} \& M_{i} be the inf \& Sup of f on $[a, b]$ and let m_{i}^{\prime} and M_{i}^{\prime} be the same for function h divide the numbers 1------n into two classes: $i \in A$ if $M_{i}-m_{i}<\delta$ and $I \in B$ if $M_{i}-m_{i} \geq \delta$. For $i \in A$ our choice of δ shows that $M_{i}^{\prime}-m_{i}^{\prime} \leq \varepsilon$. F or $i \in B M_{i}^{\prime}-m_{i}^{\prime} \leq 2 k$, where $K=\operatorname{Sup}|\phi(t)|, m \leq t \leq M$.by (1) we have $\delta \sum \delta \mathrm{g}_{\mathrm{i}} \leq \sum_{\mathrm{i} \mathrm{\epsilon} \in \mathrm{~B}}\left(\mathrm{M}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right) \delta \mathrm{g}_{\mathrm{i}}<\delta^{2}$, so that $\sum_{\mathrm{i} \in \mathrm{B}} \delta \mathrm{g}_{\mathrm{i}}<\delta$ it follows that $\mathbf{U}(\mathbf{P}, \mathrm{h}, \mathrm{g})-\mathrm{L}(\mathrm{P}, \mathrm{h}, \mathrm{g})$ $=\sum_{i \in A}\left(M_{i}^{\prime}-m_{i}^{\prime}\right) \delta g_{i}+\sum_{i \in B}\left(M_{i}-m_{i}\right) \delta g_{i} \leq \varepsilon[g(b)-g(a)]+2 K \delta<\varepsilon[g(b)-g(a)+2 K]$, since ε was arbitrary, Th. 3 implies $h \in R(g)$.

Theorem9 If $f_{1} \in R(g) \& f_{2} \in R(g)$ then $f_{1}+f_{2} \in R(g)$ and $\int^{b}{ }_{a} f_{1}+f_{2} d g=\int^{b}{ }_{a} f_{1} d g+\int^{b}{ }_{a} f_{2} d g$
Proof: If $f=f_{1}+f_{2}$, and P is any partition of $[a, b]$, let $m_{r}^{\prime}, M_{r}, M_{r}, m_{r}{ }_{r} \& m_{r}, M_{r}$ be the inf \& Sup of f_{1}, f_{2} \& f then we have $m_{r}{ }_{r} \leq f_{1} \leq M^{\prime}, m^{\prime \prime}{ }_{r} \leq f_{2} \leq M^{\prime \prime}{ }_{r}$ \& $m_{r} \leq f \leq M_{r} \Rightarrow m_{r}^{\prime}+m^{\prime \prime}{ }_{r} \leq f_{1}+f_{2} \leq M_{r}^{\prime}+M_{r}{ }_{r}$ and $m_{r} \leq f_{1}+f_{2} \leq M_{r} \Rightarrow$
$m^{\prime}{ }_{r}+m^{\prime \prime}{ }_{r} \leq m_{r} \leq M_{r} \leq M_{r}{ }_{r}+M^{\prime \prime}{ }_{r}--------(1)$ now by (1) we have the inequality $L\left(P, f_{1}, g\right]+L\left(P, f_{2}, g\right] \leq L(P, f, g] \leq U[P, f, g] \leq U\left[P, f_{1}, g\right]+U\left[P, f_{2}, g\right]$

If $f_{1} \in R(g) \& f_{2} \in R(g)$ let $\varepsilon>0$ be given ,there are partitions $P_{j}(j=1,2)$ such
$\left[P_{j}, f_{j}, g\right]-L\left(P_{j}, f_{j}, g\right]<\varepsilon$.in these inequalities if $P_{1} \& P_{2}$ are replaced by common refinement P then (2) implies $U[P, f g]-L(P, f, g]<2 \varepsilon$, since $f_{1} \& f_{2} \in R(g)$ which proves that $f \in \mathbf{R}(\mathbf{g})$

With partition P , we have $\mathrm{U}\left[\mathrm{P}, \mathrm{f}_{\mathrm{j}}, \mathrm{g}\right]<\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{f}_{\mathrm{j}} \mathrm{dg}+\varepsilon \quad(\mathrm{j}=1,2)$, then (2) implies that $\int^{b}{ }_{\mathrm{a}} \mathrm{fdg} \leq \boldsymbol{U}[\mathrm{P}, \mathrm{f}, \mathrm{g}]<\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{f}{ }_{1} \mathrm{dg}+\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{f}{ }_{2} \mathrm{dg}+2 \varepsilon$ since ε is arbitrary we have $\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{fdg} \leq \int_{\mathrm{a}}^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{f}{ }_{1} \mathrm{dg}+\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{f}_{2} \mathrm{dg}$ (3) , if we replace f_{1} \& f_{2} by - f_{1} \&- f_{2} the inequality (3) reversed i.e. $\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{fdg} \geq \int^{\mathrm{b}}{ }_{\mathrm{a}}{ }{ }_{1} \mathrm{dg}+\int^{\mathrm{b}}{ }_{\mathrm{a}}{ }^{2}{ }_{2} \mathrm{dg} \quad-----------(4)$ hence by (3) \& (4) we get the result.

Theorem10: (a) If $f \in R(g)$ on $[a, b]$ then $f^{2} \in R(g)$ on $[a, b]$
(b) If $f \in R(g)$ and $g \in R(g)$ then $f g \in R(g)$
proof: (a) since f is bounded on $[a, b]$ hence $\exists, M>0$ such that $|f(x)| \leq M$, $\forall x \in[a, b]$.Since $f \in R(g)$ and therefore for a given $\varepsilon>0$ ヨ a partition P such that $\mathrm{U}[\mathrm{P}, \mathrm{f}, \mathrm{g}]-\mathrm{L}[\mathrm{P}, \mathrm{f}, \mathrm{g}]<\varepsilon / 2 \mathrm{M}-----(1) . \operatorname{Let} \mathrm{M}_{\mathrm{r}}, \mathrm{m}_{\mathrm{r}}$ and $\mathrm{M}_{\mathrm{r}}{ }^{\prime}, \mathrm{m}_{\mathrm{r}}$ be respectively the Sup and Inf of f and f^{2} in $\left[\mathrm{X}_{\left.\mathrm{r}-1, \mathrm{X}_{\mathrm{r}}\right]}\right]$ then for any two points ζ_{1} and $\zeta_{2} \in\left[\mathrm{X}_{\left.\mathrm{r}-1, \mathrm{X}_{\mathrm{r}}\right]}\right]$, wehave $\left|f^{2}\left(\zeta_{1}\right)-\mathrm{f}^{2}\left(\zeta_{2}\right)\right|=\left|\mathrm{f}\left(\zeta_{1}\right)+\mathrm{f}\left(\zeta_{2}\right)\right| \cdot\left|\mathrm{f}\left(\zeta_{1}\right)-\mathrm{f}\left(\zeta_{2}\right)\right| \leq\left\{\left|\mathrm{f}\left(\zeta_{1}\right)\right|+\left|\mathrm{f}\left(\zeta_{2}\right)\right|\right\} \cdot\left|\mathrm{f}\left(\zeta_{1}\right)-\mathrm{f}\left(\zeta_{2}\right)\right| \leq$ $\left\{M+M \cdot f\left(\zeta_{1}\right)-f\left(\zeta_{2}\right) \mid \cdot T h i s ~ s u g g e s t s ~ t h a t ~ M_{r}^{\prime}-m_{r}^{\prime} \leq 2 M\left(M_{r}-m_{r}\right) \Rightarrow \Sigma^{n}{ }_{r=1}\left(M_{r}^{\prime}-m_{r}^{\prime}\right) \delta g_{r}\right.$
$\leq 2 M \sum^{n}{ }_{i=r}\left(M_{r}-m_{r}\right) \delta x_{r} \Rightarrow U\left[P, f^{2}, g\right]-L\left[P, f^{2}, g\right] \leq 2 M\{U[P, f, g]-L[P, f, g]\} \leq 2 M(\varepsilon / 2 M)=\varepsilon$ $\operatorname{by}(1) \Rightarrow \mathrm{U}[\mathrm{P}, \mathrm{f} 2, \mathrm{~g}]-\mathrm{L}\left[\mathrm{P}, \mathrm{f}^{2}, \mathrm{~g}\right]<\varepsilon$, hence $\mathrm{f}^{2} \in \mathrm{R}(\mathrm{g})$.
(b)we take $\phi(t)=t^{2}$ Theorem 8. Shows that $f^{2} \in R(g)$ if $f \in R(g)$.The identity

$$
4 f g=(f+g)^{2}-(f-g)^{2} \text { completes the proof. }
$$

Theorem11: If $f_{1} \leq f_{2}$ then $\int^{b}{ }_{a} f_{1} d g \leq \int^{b}{ }_{a} f_{2} d g$
Proof:As $f_{1}(x) \leq f_{2}(x)$, hence $f_{2}(x)-f_{1}(x) \geq 0$ on $[a, b]$ and g is monotonically increasing in $[a, b]$ so $g(b)>g(a)$ and $\int^{b}{ }_{a}\left(f_{2}-f_{1}\right) d g \geq 0 \Rightarrow \int^{b}{ }_{a} f_{2} d g-\int^{b}{ }_{a} f_{1} d g \geq 0$ this implies $\int^{b}{ }_{a} f_{1} d g \leq \int^{b}{ }_{a} f_{2} d g$.

Theorem 12: If $f \in R(g)$ on $[a, b]$ and if $a<c<b$ then $f \in R(g)$ on $[a, c] a n d[c, b]$ and

$$
\int_{{ }_{a}^{b}}^{\mathrm{fdg}}=\int_{\mathrm{a}}^{\mathrm{c}} \mathrm{fdg}+\int_{\mathrm{c}}^{\mathrm{b}} \mathrm{fdg} .
$$

Proof: Since $f \in R(g)$ on $[a, b]$, given $\varepsilon>0$ Э a partition P such that $U(P f, g)-L(P, f, g)<\varepsilon-----(1)$ break partition $P=\left\{x_{0}, x_{1}-\cdots-x_{r-1}, x_{r}=c----x_{n-1}, x_{n}\right\}$ such that $x_{r}=c$ then $U(P, f, g)=\sum^{n} i_{i=1} M_{i} \delta g_{i}=\sum_{i=1}^{r} M_{i} \delta g_{i}+\sum_{i=r+1}^{n} M_{i} \delta g_{i}$
and

$$
\begin{equation*}
L(P, f, g)=\sum_{i=1}^{n} m_{i} \delta g_{i}=\sum_{i=1}^{r} m_{i} \delta g_{i}+\sum_{i=r+1}^{n} m_{i} \delta g_{i} \tag{2}
\end{equation*}
$$

Subtracting (2) \&(3) and using (1) we have $\sum_{i=1}^{r}\left(M_{i}-m i\right) \delta g i+\sum_{i=r+1}^{n}\left(M_{i}-m_{i}\right) \delta g i<\varepsilon$ i.e. $\sum^{r}{ }_{i=1}\left(M_{i}-m i\right) \delta g i<\varepsilon$ and $\sum^{n}{ }_{i=r+1}\left(M_{i}-m_{i}\right) \delta g i<\varepsilon$ \qquad
$\Rightarrow \mathrm{f}$ is bounded $\mathrm{in}[\mathrm{a}, \mathrm{b}] \Rightarrow \mathrm{f}$ is bounded in $[\mathrm{a}, \mathrm{c}] \&[\mathrm{c}, \mathrm{b}]$ both -- ----(5) therefore $f \in R(g)$ on $[a, c]$ and $f \in R(g)$ on $[c, b]$ by (4) \& (5). Again we have
$\sum^{n}{ }_{i=1} M_{i} \delta g_{i}=\sum^{r}{ }_{i=} M_{i} \delta g_{i}+\sum^{n}{ }_{i=r+1} M_{i} \delta g_{i}$ whence making $\|P\| \rightarrow 0$, by definition of R-S sums we get $\int^{b}{ }^{b} f d g$
$=\int_{a}^{c} f d g+\int_{c}^{b} f d g$, hence the result.

LECTURE-4

Today we shall discuss some more theorems on R-S Integral
Theorem13: If $f \in R\left(g_{1}\right)$ and $f \in R\left(g_{2}\right)$ then $f \in R\left(g_{1}+g_{2}\right)$ and $\int^{b}{ }^{b} f d\left(g_{1}+g_{2}\right)$

$$
=\int_{a}^{b}{ }_{\mathrm{a}} \mathrm{fdg}_{1}+\int_{\mathrm{a}}{ }^{\mathrm{b} f} \mathrm{dg} \mathrm{gg}_{2} \mathrm{fdg}_{2} .
$$

Proof: Since $\mathrm{f} \in \mathrm{R}\left(\mathrm{g}_{1}\right)$ so there exists a partition P_{1} such that partition P_{2} such that $U\left(P_{2} f, g_{2}\right)-L\left(P_{2}, f, g_{2}\right)<\varepsilon$

Let P be the common refinement of $P_{1} \& P_{2}$ i.e. $P=P_{1} \cup P_{2}$ then from (1) \& (2) we have $U\left(P, f, g_{1}\right)-L\left(P, f, g_{1}\right)<\varepsilon-------\quad(3) \& U\left(P, f, g_{2}\right)-L\left(P, f, g_{2}\right)<\varepsilon$

Let $\mathrm{g}=\mathrm{g}_{1}+\mathrm{g}_{2}$ thenconsider $\sum^{\mathrm{n}} \mathrm{i}_{1=1} \mathrm{M}_{\mathrm{i}}\left[\mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{i}-1}\right)\right]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{M}_{\mathrm{i}}\left[\left(\mathrm{g}_{1}+\mathrm{g}_{2}\right)\left(\mathrm{x}_{\mathrm{i}}\right)-\left(\mathrm{g}_{1}+\mathrm{g}_{2}\right)\left(\mathrm{x}_{\mathrm{i}-1}\right)\right]$ $=\sum_{i=1}^{n} M_{i}\left[\left(g_{1}+g_{2}\right)\left(x_{i}\right)\left(g_{1}+g_{2}\right)\left(x_{i-1}\right)\right]=\sum_{i=1}^{n} M_{i}\left[\left(g_{1}\left(x_{i}\right)-g_{1}\left(x_{i-1}\right)\right]+\sum_{i=1}^{n} M_{i}\left[\left(g_{2}\left(x_{i}\right)-g_{2}\left(x_{i-1}\right)\right]\right.\right.$.

Thus $U\left[P, f, g_{,}\right]=U\left[P, f, g_{1}\right]+U\left[P, f, g_{2}\right]---------(5)$. Similarly it can be proved that

$$
L[P, f, g]=L\left(P, f, g_{1}\right]+L\left(P, f, g_{2}\right] \cdots------------------(6) \text { so, U[P, f, g,]-L[P,f,g]= }
$$ $U\left[P, f, g_{1}\right]-L\left(P, f, g_{1}\right]+U\left[P, f, g_{2}\right]-L\left(P, f, g_{2}\right]<\varepsilon$, hence $f \in R\left(g_{1}+g_{2}\right)$ as $g=g_{1}+g_{2}$ By (5)

$$
\begin{equation*}
\text { and } U[P, f, g,]=U\left[P, f, g_{1}\right]+U\left[P, f, g_{2}\right] \Rightarrow \int^{b}{ }_{a} f d g \leq \int^{b}{ }_{a} f_{d g}+\int_{a}{ }^{\mathrm{b} f} \mathrm{f} \mathrm{dg}_{2} \tag{8}
\end{equation*}
$$

by (7) \& (8) we have $\quad \int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{fd}\left(\mathrm{g}_{1}+\mathrm{g}_{2}\right)=\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{fdg}_{1}+\int_{\mathrm{a}}{ }^{\mathrm{b}} \mathrm{f} \mathrm{dg}_{2} \mathrm{fdg}_{2}$.
Theorem14: If $f \in R(g)$ on $[a, b]$ and c is a positive constant then $f \in R(c g)$ and $\int^{b}{ }_{\mathrm{a}} \mathrm{fd}(\mathrm{cg})=\mathrm{c} \int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{fdg}$

Proof: As $f \in R(g)$ on $[a, b)$, so for given $\varepsilon>0$ there exists partition P such that $U[P, f, g]-,L[P, f, g]<\varepsilon / c \Rightarrow \sum_{i=1}^{n} M_{i}\left[\left(\operatorname{cg}\left(x_{i}\right)-\operatorname{cg}\left(x_{i-1}\right)\right]-\sum_{i=1}^{n} m_{i}\left[\left(\operatorname{cg}\left(x_{i}\right)-\operatorname{cg}\left(x_{i-1}\right)\right]<\varepsilon\right.\right.$
$\Rightarrow U[P, f, c g]-L[P, f, c g]<\varepsilon$, so $f \in R(c g)$ on $[a, b]$. Also as $L[P, f, c g]=\sum_{i=1}^{n} m_{i} c \delta g i$
$=\sum^{n}{ }_{i=1} m_{i}\left[\left(c\left\{g\left(x_{i}\right)-g\left(x_{i-1}\right)\right\}\right]=c \sum_{i=1}^{n} m_{i} \delta g i=c L[P, f, g] . A s \int^{b}{ }_{\mathrm{a}}{ }^{\mathrm{fd}}(\mathrm{cg})=\operatorname{Sup} L[P, f, c g]\right.$
$=c \operatorname{Sup} L[P, f, g]=c \int^{b}{ }_{\mathrm{a}} \mathrm{fdg}$. Hence $\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{fd}(\mathrm{cg})=\int^{\mathrm{b}}{ }_{\mathrm{a}} \mathrm{fdg}$ is proved

Theorem15:If $f \in R(g)$ on $[a, b]$ and if $|f(x)| \leq M$ on $[a, b]$, then $\left|\int^{b}{ }^{b} f d g\right| \leq M[g(b)-g(a)]$
Proof: Since $|f(x)| \leq M$ i.e. $-M \leq f(x) \leq M$ we have
$M[g(b)-g(a)] \leq\left|\int_{a}{ }^{b} f(x) d g\right| \leq M[g(b)-g(a)]$, by Mean value Theorem we have $\quad\left|\int_{a}{ }^{b} f(x) d g\right|=M[g(b)-g(a)]$. Hence proved

LECTURE-5

Today we will discuss the theorem which states the relation betwwen RIEMANN

\& R-S Integral (Th.16),First Mean value Theorem and some other Theorems

\&cor.

Theorem16 : Assume g is monotonically increasing and $g^{\prime} \in R$ on $[a, b]$.Let f be bounded real function on $[a, b]$ then $f \in R(g)$ if and only if $f g^{\prime} \in R(g)$, in that case

$$
\begin{equation*}
\int_{a}^{b} f d g=\int_{a}^{b} f(x) g^{\prime}(x) d g \tag{1}
\end{equation*}
$$

Proof : Let $\varepsilon>0$ be given, since $g^{\prime} \in R$ then by Th. 3 to g^{\prime}, there is a partition $P=\left\{a=x_{0}, x_{1}, x_{2}-\cdots---x_{n-1}, x_{n}=b\right\}$ of $[a, b]$ such that $U\left[P, g^{\prime}\right]-L\left[P, g^{\prime}\right]<\varepsilon$.

The Mean value theorem furnishes points $\mathrm{t}_{\mathrm{i}} \in\left[\mathrm{x}_{\mathrm{i}-1,}, \mathrm{x}_{\mathrm{i}}\right]$, such $\delta \mathrm{g}_{\mathrm{i}}=\mathrm{g}^{\prime}\left(\mathrm{t}_{\mathrm{i}}\right) \delta \mathrm{x}_{\mathrm{i}}$,
for $\mathrm{i}=1,2,---n$. If $\mathrm{s}_{\mathrm{i}} \in\left[\mathrm{x}_{\mathrm{i}-1,1} \mathrm{x}_{\mathrm{i}}\right]$ then $\sum^{\mathrm{n}} \mathrm{i}_{1}\left|\mathrm{~g}^{\prime}\left(\mathrm{s}_{\mathrm{i}}\right)-\mathrm{g}^{\prime}\left(\mathrm{t}_{\mathrm{i}}\right)\right| \delta \mathrm{x}_{\mathrm{i}}<\varepsilon$
By (2) \& Th. 4. Now Put $M=\operatorname{Sup}|f(x)|$, since $\sum^{n}{ }_{i=1} f\left(s_{i}\right) \delta g_{i}=\sum^{n}{ }_{i=1} f\left(s_{i}\right) g^{\prime}\left(t_{i}\right) \delta x_{i}, i t$ follows from (3) that $\left|\sum_{i=1}^{n} f\left(s_{i}\right) \delta g_{i}-\sum_{i=1}^{n} f\left(s_{i}\right) g^{\prime}\left(t_{i}\right) \delta x_{i}\right| \leq M \varepsilon$.

In particular $\sum_{i=1}^{n} f\left(s_{i}\right) \delta g_{i} \leq U[P, f]+M \varepsilon$, for all choices of $s_{i} \in\left[x_{i-1}, x_{i}\right]$, so that

$$
U[P, f, g] \leq U\left[P, f, g^{\prime}\right]+M \varepsilon \text {, the same argument leads from (4) to }
$$

$$
\begin{equation*}
\mathrm{U}\left[\mathrm{P}, \mathrm{f} \mathrm{~g}^{\prime}\right] \leq \mathrm{U}[\mathrm{P}, \mathrm{f} \mathrm{~g}]+\mathrm{M} \varepsilon \text {.Thus }\left|\mathrm{U}[\mathrm{P}, \mathrm{f}, \mathrm{~g}]-\mathrm{U}\left[\mathrm{P}, \mathrm{f} \mathrm{~g}^{\prime}\right]\right| \leq \mathrm{M} \varepsilon . \tag{5}
\end{equation*}
$$

Now (2) is true if P is replaced by any refinement, hence (5) also remains true .We conclude that $\left|-\int_{a}^{b} f(x) d g-\int_{a}^{b} f(x) g^{\prime}(x) d x\right| \leq M \varepsilon$. But ε is arbitrary, hence
$\int_{a}{ }^{b} f(x) d g=-\int_{a}^{b} f(x) g^{\prime}(x) d x$ for any bounded function f. The equality of the lower integrals follows from (4) in the same manner. Hence the theorem is proved.

Theorem 17: Let $f \in R(g)$ on $[a, b]$ then $m[g(b)-g(a)] \leq \int_{a}^{b} f(x) d g \leq M[g(b)-g(a)]$ Proof: We have $m \leq m_{r} \leq M_{r} \leq M$ therefore $\sum_{r=1}^{n} m \delta g_{r} \leq \sum_{r=1}^{n} m_{r} \delta g_{r} \leq \sum_{r=1}^{n} M_{r} \delta g_{r} \leq$ $\sum_{r=1}^{n} M \delta g_{r}$ i.e $\cdot[g(b)-g(a)] \leq L(P, f) \leq U(P, f) \leq M[g(b)-g(a)]$.But $L[P, f, g] \leq \int_{a}^{-}{ }^{b} f(x) d g$ $\leq \int_{a}{ }^{b} f(x) \leq M[g(b)-g(a)]$. Since $f \in R(g)$ hence $\int_{a}{ }^{b} f(x) d g=\int_{a}{ }^{b} f(x)=\int_{a}{ }^{b} f(x)$, it follows that $m[g(b)-g(a)] \leq \int_{a}^{b} f(x) d g \leq M[g(b)-g(a)]$. Hence proved.

Cor1. If $f \in R(g)$ then \mathcal{H} a number ζ lying between m \& M such that

$$
\begin{equation*}
\int_{a}^{b} f(x) d g=\zeta[g(b)-g(a)] \tag{1}
\end{equation*}
$$

Proof: As we have proved $m[g(b)-g(a)] \leq \int_{a}{ }^{b} f(x) d g \leq M[g(b)-g(a)]$.
Then \mathcal{G} a number ζ such that $m \leq \zeta \leq M$ it follows that $\int_{a}{ }^{b} f(x) d g=\zeta[g(b)-g(a)]$
Cor2.First Mean value theorem : If f is continuous and real , g is monotonically increasing on $[a, b]$, then Э a point $c \epsilon(a, b)$ such that $\int_{a}{ }^{b} f(x) d g=f(c)[g(b)-g(a)]$

Proof: From above cor.1, we have $\int_{a}{ }^{b} f(x) d g=\zeta[g(b)-g(a)]$, f is continuous in $[a, b]$ and $m \leq \zeta \leq M \Rightarrow \exists c \in[a, b]$ such that $f(c)=\zeta--------(3)$,by (1) \& (3) we have $\int_{a}^{b} f(x) d g=f(c)[g(b)-g(a)]$

Cor. 3: If $\mathrm{f} \in \mathrm{R}(\mathrm{g})$ and if $|\mathrm{f}(\mathrm{x})| \leq \mathrm{k}$ on $[\mathrm{a}, \mathrm{b}]$ then $\left|\int_{\mathrm{a}}{ }^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dg}\right|=\mathrm{k}[\mathrm{g}(\mathrm{b})-\mathrm{g}(\mathrm{a})]$
Proof: Since $|\mathrm{f}(\mathrm{x})| \leq \mathrm{k}$ ie. $-\mathrm{k} \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{k}$, we have
$-k[g(b)-g(a)] \leq\left|\int_{a}^{b} f(x) d g\right| \leq k[g(b)-g(a)]$, by Mean value Theorem we have $\left|\int_{a}^{b} f(x) d g\right|=k[g(b)-g(a)]$. Hence proved

Integration and Differential Theorem 18: Let $f \in R$ on $[a, b]$.For $a \leq x \leq b$, put
$F(x)=\int_{a}^{b} f(t) d t$, then F is continuous on $[a, b]$, furthermore, if f is continuous at a point x_{0} of $[a, b]$, then F is differential at x_{0}, and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Proof: Since $f \in R, f$ is bounded. Suppose $|f(t)| \leq M, f o r a \leq t \leq b$. If $a \leq x \leq b$, then $|F(y)-F(x)|=\left|\int_{x}^{y} f(t) d t\right| \leq M(y-x)$.By Th. 14 \& 15 given ε, we see that $|\mathrm{F}(\mathrm{y})-\mathrm{F}(\mathrm{x})|<\varepsilon$ provided that $|\mathrm{y}-\mathrm{x}|<\varepsilon / \mathrm{M}$.this proves continuity \& in fact uniform continuity of F. Now suppose f is continuous at x_{0}, hence given $\varepsilon>0$,choose $\delta>0$ such that $\left|\mathrm{F}(\mathrm{t})-\mathrm{F}\left(\mathrm{x}_{0}\right)\right|<\varepsilon$ if $\left|\mathrm{t}-\mathrm{x}_{0}\right|<\delta$ and $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$.hence if

$$
\begin{aligned}
& x_{0}-\delta \leq s \leq x_{0} \leq t \leq x_{0}+\delta \text { and } a \leq s \leq t \leq b \text {, we have by Th. } 15 \\
& \{F(t)-F(s) /(t-s)\}-f\left(x_{0}\right) \mid \\
& =\left|1 /(t-s) \int_{a}^{b}\left\{f(u)-f\left(x_{0}\right)\right\} d g\right|<\varepsilon \text { it follows that } F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right) .
\end{aligned}
$$

LECTURE -6

Now we will study about Fundamental Theorem of calculus, integration by parts and some problems on R-S Integral

Theorem19 : The Fundamental Theorem of Calculus: If $f \in R$ on $[a, b]$ and if there is a differential function F on $[a, b]$ such that $F^{\prime}=f$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$

Proof: Let $\varepsilon>0$ be given, choose a partition $P=\left\{a=x_{0}, x_{1}, x_{2}------x_{n-1}, x_{n}=b\right\}$ of $[a, b]$ so that $U[P, f]-L[P, f]<\varepsilon$, the mean value theorem furnishes points $t_{i} \in\left[x_{i-1}, x_{i}\right]$ such that $F\left(x_{i}\right)-F\left(x_{i-1}\right)=f\left(t_{i}\right) \delta x_{i}, \quad$ for $i=1,2,-------n$ thus $\sum^{n}{ }_{i=1} f\left(t_{i}\right) \delta x_{i}=F(b)-F(a)$, it follows from Th. 4 that $\left|F(b)-F(a)-\int_{a}^{b} f(x) d x\right|<\varepsilon$,this holds for every $\varepsilon>0$ hence the proof is complete.

Theorem20: Suppose $F \& G$ are differential function on $[a, b], F^{\prime}=f \in R \& G^{\prime}=g \in R$ then $\int_{a}{ }^{b} F(x) g(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x$.

Proof : Put $\mathrm{H}(\mathrm{x})=\mathrm{F}(\mathrm{x}) \mathrm{G}(\mathrm{x})$ and apply Th. 17 to H and its derivative, from this We have $\int_{a}^{b} H^{\prime}(x) d x=H(b)-H(a) \quad--------(1) \quad\left[\right.$ because $\left.\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)\right]$.

Now $H^{\prime}(x)=F^{\prime}(x) G(x)+F(x) G^{\prime}(x)=f(x) G(x)+g(x) F(x)$ then from (1) we have

$$
\begin{aligned}
& \int_{a}^{b} H^{\prime}(x) d x=\int_{a}^{b}\{f(x) G(x)+g(x) F(x)\} d x=H(b)-H(a)=F(b) G(b)-F(a) G(a) \\
& =\int_{a}^{b} f(x) G(x) d x+\int_{a}^{b} g(x) F(x) d x, \text { thus we have }
\end{aligned}
$$

$$
\left.\int_{a}^{b} F(x) g(x) d x=F(b) G(b)-F a\right) G(a)-\int_{a}^{b} f(x) G(x) d x \text {. Hence proof is complete }
$$

Now We solve Some problems on R-SIntegral :

Prob. 1 : Evaluate RS $\int^{1}{ }_{0} x d x^{2}$
Sol. Since x is continuous and x^{2} is increasing in $[0,1] \operatorname{RS} \int^{1}{ }_{0} x d x^{2}$ exists .to find its value ,consider the partition $P=\left\{x_{0}=0, x_{1}, x_{2}-\cdots----x_{n-1}, x_{n}=1\right\}$ where $x_{r}=r / n$ let

$$
\begin{aligned}
& \zeta_{r} \in\left[x_{r-1}, x_{r}\right\} \text { then } \sum_{r=1}^{n} f\left(\zeta_{r}\right) \delta g_{r}=\sum_{r=1}^{n} x_{r}\left(x_{r}^{2}-x_{r-1}^{2}\right)=\sum_{r=1}^{n}\left\{(r / n)(r / n)^{2}-(r-1 / n)^{2}\right\}= \\
& 1 / n^{3} \sum_{r=1}^{n} r(2 r-1)=1 / n^{3}\left[2 \sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r\right]=(n+1)(4 n-1) / 6 n^{2}=\operatorname{Lim}_{n \rightarrow \infty}(n+1)(4 n-11) / 6 n^{2} \\
& =(1)(4) / 6=2 / 3
\end{aligned}
$$

Another method : Since $\mathrm{f}(\mathrm{x})=\mathrm{x}$ is R - Integrable and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$ is differentiable on $[0,1]$ then by Th. 16 , we have $R \int^{1}{ }_{0} x d x^{2}=\int_{0}{ }^{1} x 2 x=2 \int^{1}{ }_{0} x^{2} d x=2 / 3$

Prob. 2 : Evaluate the following (1) $\int_{0}^{2}{ }_{0} x^{2} d x^{2} \quad$ (2) $\int_{0}^{1}{ }_{0} x^{2} d x^{2}$
Sol. Here we use the result $\int_{a}{ }^{b} f d g=\int_{a}^{b} f g^{\prime} d x$
(1) $\int_{0}^{2}{ }_{0} x^{2} d x^{2}=\int_{0}^{2} x^{2}(2 x) d x=2 \int_{0}^{2} x^{3} d x=2 / 4\left(2^{4}\right)=8$
(2) $\int_{0}^{1} x^{2} d x^{2}=\int_{0}^{1} x^{2}(2 X) d x=\int_{0}^{1} x^{3} d x=2 / 4(1)^{4}=1 / 2$

Prob3: Find the value of $\int_{-1}^{2} x^{3} d|x|^{5}$
Sol: We have $\int^{2}{ }_{-1} x^{3} d|x|^{5}=\int^{0}{ }_{-1} x^{3} d(-x)^{5}+\int_{0}^{2} x^{3} d\left(x^{5}\right)=-5 \int_{-1}^{0} x^{7} d x+5 \int_{0}^{2} x^{7} d x=$ $5 / 8+160$

Prob.4: Evaluate $\int^{2}{ }_{0}[x] d x^{2}$
Sol: $\int^{2}{ }_{0}[x] d x^{2}=\int_{0}^{2}[x] 2 x d x=2 \int^{1}{ }_{0}[x] x d x+2 \int_{1}{ }^{2}[x] x d x=2 \int^{1}{ }_{0} 0 x d x+2 \int_{1}{ }^{2} 1 . x d x=$ $0+\left(x^{2}\right)_{1}{ }^{2}=4-1=3$

