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                                  THE RIEMANN - STIELTJES INTEGRAL     

                                                  LECTURE -1 

  Today we will discuss about the Riemann Stieltjes Integral and some of its    

properties. 

We know that the integral calculus is the outcome of an attempt to solve the 

problems of finding the area of the plane bounded by curves, in this process it is 

necessary to divide area into a very large number of small elements and then to 

obtain the limit of the sum of all these elements when each is infinitesimally small 

and their number is indefinitely great. Afterwards it was seen that the process of 

integration could be viewed as a process inverse of differential.  

Riemann was the first scholar to give a satisfactory, rigorous arithmetic definition 

of the integral of a bounded function and also established a necessary & sufficient 

condition for existence of the definite integral of function. 

Definition of Riemann Integral : Consider a bounded real valued function f (x) 

defined on  closed interval  [a, b] = I .By  a partition of I ,we mean a finite  set of 

real number P = {x0,x1,x2-----xn } such that a=x0 <x1 <x2 ---,xn =b The closed interval  

[x0 ,x1] ,[x1,x2 ] ------------[xn-1,xn] constitute the segments of partition. we denote 
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the sub-interval [xr-1,xr] and its length xr – xr-1  by δr . the greatest of the lengths  of 

sub interval is called norm denoted by II P II =  Max., δr, :  r=1,2, --------n}.     

As we have already studied about lower, upper bound, sup & inf. of  function in  

B.Sc. 3rd Year,so let m & M be the inf. & sup of bounded function f(x) of [a, b] 

respectively. Now form the sum  

   s  =   L (P, f) =  ∑n
r =1 mr  δr,             S  = U (P ,f) = ∑n

r =1Mr  δr,    The sum s and S are 

called Darboux sums. They are  also called the lower & upper  Riemann sum 

respectively, evidently s ≤ S and   r= , ,  -----n 

We have  m ≤  mr  ≤  Mr  ≤M therefore ∑n
r=1 m δr  ≤ ∑n

r=1mr δr≤ ∑n
r=1Mr δr ≤ ∑n

r=1M δr 

i.e.m(b –a) ≤ L(P,f) ≤ U(P,f) ≤ M (b –a) Now consider all possible partition  of [a,b].  

Now we define  upper integral & lower integral as follows  

 ∫a
b 

f(x) dx = inf. {U(P,f) : P is a partition of [a ,b] } and _ ∫b
af (x) dx =Sup{L(P, f ):P is a 

partition of [a,b]}  

 If    
 ∫a

b 
f(x) dx  = _ ∫b

af (x) dx =  ∫b
af (x) dx  then we say that f is Riemann integrable 

or R-integrable or integrable over [a ,b] denoted by (R )[a,b], or simply ∫b
af (x) dx  

 Now we will study about Riemann–Stieltjes integral  which is the generalized 

concept of Riemann Integral  given by Thomas Joanes Stieltjes (1856 – 1894). 
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 Definition of Riemann Stieltjes Integral : Consider a bounded real valued 

function  f (x) defined on  closed interval  [a, b] = I .By  a partition of I ,we mean a 

finite  set of real number P = {x0,x1,x2-------- --xn} such that a=x0 <x1 <x2 ---,xn =b.The 

closed interval  [x0 ,x1] ,[x1,x2 ] -----------[xn-1,xn] constitute the segments of the 

partition. we denote the sub-interval [xr-1,xr] and its length xr – xr-1 by δr. the   

greatest of the lengths of sub interval is called norm denoted by II P II = 

 max{ δr, ::  r=1,2, --------n}.     

   

As we have already studied about lower, upper bound, sup & inf. of  function ,so 

let m & M be the inf. & sup of bounded function  f(x)  of [a, b] respectively. Let 

mr  = inf.{ f(x) : x ϵ [xr-1 , xr]} and Mr = Sup.{ f(x) : x ϵ [xr-1 , xr]} . Let g be 

monotonically non decreasing function  on [a, b] ,write δgr  = g(xr ) – g (x r-1 ) 

.then δgr ≥ 0.   

Now form the sum  

  s  =   L (f,g,P) =  ∑n
r =1 mr δgr S  = U (f,g,P) = ∑n

r =1Mr  δgr,    These sums  s and S are 

respectively called lower & upper Riemann  -Stieltjes sums .evidently s     and   

r=1,2,3 --n 

We have m ≤  mr ≤ Mr ≤ M therefore  ∑n
r=1 m r δgr ≤ ∑n

r=1 mr  δgr, ≤ ∑nr=1Mr  δgr ≤  
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∑n
r=1 M δgr i.e. m(b – a) ≤ L(P,f,g) ≤ U(P) ≤ M (b –a) Now consider all possible 

partition of [a, b] ,now we define  upper & lower Riemann -Stieltjes  integral as 

follows 
 ∫a

b 
f(x) dg =inf. {U(P,f,g,) : P is a partition of [a ,b] } and _ ∫b

af (x) dg = 

Sup{L(P, f,g,):P is a partition of [a,b]}  

If    
 ∫a

b 
f(x) dg  = _ ∫b

af (x) dg =∫b
af (x) dg  then we say that  the integral is Riemann- 

stieltjes Integral denoted by  R(g) or R-S (g), or simply=∫b
af (x) dg  over [a,b],the 

function f is called the integrand  & g is called integrator.  

 

Riemann -Stieltjes Integral as a limit of sums : Let f be a bounded and g be 

monotonically increasing  function on [a,b].Let P = { a = x0,x1,x2-------xn-1 xn, =b}be a 

partition of [a,b] and let ti ϵ [xi-1,xi] ,then we define the R-S  sums of f relative to g 

on [a,b] as S(P,f,g ) = ∑n
i=1  f (ti) δgi .The sum S(P,f,g ) is said to be convergent to a 

limit ,as ||P||→0 and in this case ∫b
afdg = S(P,f,g ) =  ∑n

i=1  f (ti) δgi 

Refinement of a partition : A partition P
*

 is said to be refinement of  P if P ⊂P
* 

. In 

this case  we say that P
*
 is finer than P i.e. P

*
 contains at least one  point more  

than P. If P
*
 is the common refinement of the partitions P1 & P2 then P

*
 = P1 U P2. . 

 Theorem 1:  The lower integral can not exceed upper integral. 
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Proof : let P1 & P2 be two partition of [a,b] i.e.P1, P2 ϵ P[a, b] then L[P1,f,g]   L P
*
,f,g] 

  U[P
*
,f ,g]   U*P2,f,g], then we have L [P1,f,g+   U*P2,f,g]  --------(1) now if we kept 

P2 fixed  and take Sup. Overall P1, then from equation (1) we have  ‒∫ f(x) dg   

[U(P2,f,g)] .  -------(2) The theorem follows by taking the  inf. over all P2 in (2)by 

definition of Lower & upper integral. 

 

Theorem 2 : If P
*
 is the common refinement of P then 

                   1)    L[P,f,g]   L[P
*
,f,g]     ------------- (1)                  

                   2)    U[P
*
,f,g]   U[P,f,g] ---------------(2) 

Proof : To prove (1) suppose first that P
*
contains just one point more than P. Let 

this extra point be y ,and suppose  xi-1 < y < xi ,where xi-1 & xi are two consecutive 

points of P. Let w1= inf.  f(x)  in  (xi-1   x   y)  &  w2 = inf. f(x) in  (y   x   xi ) clearly  

  w1 & w2 ≥ mi because   mi = inf. f(x) in (xi-1   x   xi), hence 

  L[P
*
,f, g] - L[P, f, g] = w1 [g(y) - g(xi-1 )]+ w2[ g (xi) – g (y)] – mi [g (xi ) – g (xi-1 )]   

=   (w1 -mi)[ g (y) – g(xi-1)] +( w2 -mi)[g(xi) – g(y)] ≥ 0 ,hence  we have the result.(1 ) 

                 

  To prove (2) suppose first that P
*
contains just one point more than P. Let this 

extra point be y, and suppose xi-1 < y < xi  where  xi-1 & xi are two consecutive 

points of P. Let u1 = Sup. f(x) in (xi-1   x   y) & u2 = Sup. f(x) in  (y   x   xi ) clearly  
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u1 & u2 ≤ Mi  as Mi = Sup. f(x) in  (xi-1   x   xi), hence   

  U[P
*
,f, g]  -  U[P, f, g] = u1 [g(y) - g(xi-1 )] + u2[ g (xi) – g (y)] – Mi [g (xi ) – g (xi-1 )]   

  =  (u1 -Mi)[ g (y) – g(xi-1)] + (u2 –MI)[g(xi) – g(y)] ≤ 0 ,hence  we have the result. (2)  

                

Theorem 3:  let  f ϵ R(g)  on [a ,b] if and only if ⩝ ɛ > 0 Ǝ a partition P of  [a,b] such    

that  U[P, f, g] – L[P, f, g] <ɛ      -----------------(1) 

 Proof: For every partition P we have L[P, f,g]  _ ∫b
af (x)dg   

 ∫a
b 

f(x) dg   U[P,f,g], 

thus (1) implies by using definition of R-S integral 0     
 ∫a

b 
f(x) dg  - _ ∫b

af (x)  < ɛ, 

hence if  (1) can be satisfied for every ɛ > 0,we have    
 ∫a

b 
f(x) dg  = _ ∫b

af (x) dg i.e. 

 f ϵ R(g) . 

Conversely ,suppose f ϵ R(g) and let ɛ >0,be given then there exists partition 

 P1 &P2 such that U[P2,f,g] - ∫b
af (x) dg  < ɛ/2 --------(2) and 

                                ∫b
af (x) dg - L[P1,f,g] < ɛ/2 ----------(3)  

 We choose P to be common refinement of P1 & P2.Then Th.2 together with 

equations (2) & (3) show that U[P, f, g]  U[P2,f,g] < ∫b
af (x) dg + ɛ/2 < L[P1,f,g]+ ɛ   

L[P, f, g]+ ɛ .-----(4) thus from equation (4) we get the result U[P,f, g] – L[P, f ,g] <ɛ.       
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                                                      LECTURE -2     

Now we will study some more properties& Theorems on Riemann –Stieltjes 

Integral 

Theorem 4 : 1) If f is continuous and g be monotonic non- decreasing on [a,b] 

then f ϵ R (g) on [a,b]. 

 

2) If P = { a = x0,x1,x2-------xn-1 xn =b} and si ,ti are arbitrary points in [xi-1 ,xi]then 

        ∑n
r =1 | f(si) - f (ti)| δgi < ɛ 

 

 3) Moreover , given ɛ > 0 ,there exist δ>0 such that  |∑n
r =1f (tr) δgi - ∫b

af (x) dg|< ɛ  

 

Proof : 1) Let ɛ > 0 be given. Choose ɳ > 0 so that [g(b) – g(a)] ɳ < ɛ, since f is 

uniformly continuous on [a, b],there exists a δ > 0 such that 

      |f(x) – f(t)| < ɳ ------------ (1), if x, t ϵ [a, b], and |x-t| < δ 

    If P is any partition of [a, b] then Mi – mi   ɳ   for  (I =1,2 ----n) and therefore  

   U[P,f,g] – L[P,f,g] = ∑n
i=1 (Mi –mi )δgi   ɳ ∑n

i=1 δgi = ɳ[g(b)–g(a)] < ɛ hence f ϵR(g)  

      by Th3. 

2) Since si  ,ti ϵ [xi-1 ,xi] ,hence f (si) & f( ti ) lie in [mi , Mi], so that  
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{|f(si) - f(ti)|}δgi   Mi - mi ⇒ ∑n
i=1|f(si) - f (ti)| δgi   U[P,f,g]–L[P,f,g]   ɛ.hence proved 

3) : Since f is R-S Integrable relative to g ,we have 

                        
 ∫a

b 
f(x) dg  = _ ∫b

af (x) dg =∫b
af (x) dg   ---------------------(2) 

Now  
 ∫a

b 
f(x) dg = inf.[U(P,f,g) ⇒   

 ∫a
b 

f(x) dg   *U(P,f,g)+ and   
 ∫a

b 
f(x) dg   *U(P,f,g)+  

            _ ∫b
af (x) dg  = Sup [L(P, f, g)] ⇒ _ ∫b

af (x) dg ≥ [L(P, f, g)] whence we get 

         
 ∫a

b 
f(x) dg + ɛ >[U(P,f,g)] and _ ∫b

af (x) dg - ɛ < [L(P,f,g)] by (2) we have 

            ∫b
af (x) dg - ɛ <[L(P,f,g)]< U (P,f,g)] < ∫a

b 
f(x) dg + ɛ ----------------(3) , 

          if ti ϵ [xi-1,xi] be arbitrary then obviously mi   f(ti)   Mi and so  

                     L(P, f, g)]   ∑ f(ti) δgi   U (P, f, g)] ---------------------------- (4) 

 Combining (3) & (4) we have  ∫b
af (x) dg - ɛ   ∑ f(ti) δgi    ∫a

b 
f(x) dg + ɛ  or we have 

 -ɛ < ∫b
af (x) dg -  ∑ f(ti) δgi < ɛ ie. |∑n

r =1f (tr) δgi - ∫b
af (x) dg|< ɛ hence proved. 

 

Theorem5 : Let f be monotonic and g be continuous and monotonic non 

decreasing on [a,b] then fϵ R(g) 

Proof : Let ɛ > 0 .since g is continuous on[a ,b] ,it takes all the values between  

  g(a) & g(b) ,also g is monotonic non decreasing we can therefore choose a 

partition P of [a, b] such that δgr = g(xr) – g(xr-1) = {g(b) – g(a)} /n, for  r =1,2,------ n 

let mr = inf.(f)  & Mr  = Sup (f), also let f be monotonic non-decreasing  then 

 mr = f(xr-1)  & Mr = f(xr) Now 
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U[P, f, g] – L[P, f, g+ = ∑n
r =1 (Mr  - mr ) δgr = ∑n

r =1 {f(xr ) - f(xr-1) {g(b) – g(a)} /n 

 = {f(b) – f(a)} {g(b) – g(a)} /n  when n is sufficiently large then R.H.S.becomes 

arbitrary small then U[P, f ,g] – L[P, f, g] <ɛ i.e. f ϵR (g) 

 

 Theorem6 : If  f ϵ R (g) on [a ,b] then c.f ϵ R(g) on [a, b] where c is constant  and 

                           ∫b
a  cf (x) dg  = c∫b

af (x) dg 

Proof : Let  f ϵR (g) on [a ,b] then given ɛ>0 ,there exist partition P of [a, b] such           

that U[P, f ,g] – L[P, f, g] < ɛ and    
 ∫a

b 
f(x) dg  = _ ∫b

af (x) dg =∫b
af (x) dg    --------- (1)  

and  (cf)(x) =c f(x) and so U[P, c.f ,g] =c U[P ,f ,g]&  L[P, cf ,g] = c L[P, f ,g] --------(2)       

Thus U[P, cf ,g]- L[P ,cf, g] =c {U[P, f, g] – L[P ,f ,g]} < c ɛ = ɛ1 ,hence c.f ϵ R(g) on 

 [a, b]  ie.    
 ∫a

b 
cf(x) dg  = _ ∫b

a cf (x) dg =∫b
a cf (x) dg  ---------(3).Taking  infimum  of 

both sides of (2) for all partition P of [a ,b] we get    
 ∫a

b 
cf(x) dg  =c 

 ∫a
b 

f(x) dg  ----(4) 

therefore  ∫b
a cf (x) dg =   c ∫b

af (x) dg ,hence proved. 

 

Theorem 7: If f ϵR (g) on [a,b] then so is |f| and |∫b
af (x) dg|   |∫b

a |f (x)| dg 

 Proof: Since f ϵR (g) on [a ,b] ,f is bounded and  g(x) is monotonic non- decreasing 

on [a,b]. Also given ɛ > 0 there exists partition P such that U[P, f ,g] – L[P, f ,g] <ɛ 

ie.  ∑n
i=1(Mi – mi) δgi  < ɛ --------(1) where mi = inf(f) & Mi = Sup (f) in [xi-1,xi] , and  
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 δgi= g(xi) – g(xi-1). Let Mi’ =  up(|f|) & mi’ =inf( |f|) in*xi-1,xi] , if x ,y ϵ[xi-1,xi] then 

|{|f(x)| - |f(y)|-| |f(x) – f(y),this suggests that Mi’- mi’   Mi – mi  so we have 

∑n
i=1 Mi’- mi’ δgi   ∑n

i =1 Mi – mi δgi < ɛ so that U[P ,|f| ,g] – L[P, |f| ,g] < ɛ therefore 

|f|ϵR (g) Further Mi   Mi’ or, | ∑n
i=1 Mi δgi |   ∑n

i=1 Mi’ δgi , making || P→0 ,we get 

|∫b
af (x) dg|    |∫b

a |f (x)| dg 
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                                                     LECTURE-3        

   Today we will study some special properties of R-S Integral 

Theorem8 : Suppose fϵ R (g)on[a, b+ ,m  f  M, φ is continuous on [m, M] and  

h(x) = φ(f(x) on [a, b],then hϵ R(g) on [a ,b]. 

Proof: Choose ɛ > 0.since φ is  uniformly continuous  on [m, M],there exists δ>0 

such that  δ< ɛ and |φ(s) – φ(t)|<ɛ if |s-t |  δ and s, t ϵ[m, M].Since f ϵR (g) there 

is a partition P of [a, b] such that U(P ,f ,g) –L (P ,f ,g) < δ2
  -------------------(1) . 

Let mi & Mi be the inf  & Sup of f on [a,b] and let mi’ and Mi’ be the same for 

function h divide the numbers 1------n into two classes : i ϵ A  if Mi - mi  <δ and 

 I ϵ B  if Mi - mi  ≥δ. For i ϵ A our choice of δ shows that  Mi’ – mi’   ɛ. F or 

 iϵB  Mi’ – mi’   2k ,where K =  up |φ (t)|, m   t   M.by  (1) we have 

 δ∑ δgi   ∑iϵ B (Mi - mi ) δgi<δ2 
 , so that  ∑iϵ B δgi <δ it follows that U(P,h ,g) –L (P,h,g) 

= ∑i ϵ A(Mi’ – mi’) δgi +∑iϵ B  (Mi - mi ) δgi   ɛ[g (b)- g(a)++2 Kδ<ɛ [g (b)- g(a) +2 K], 

since ɛ was  arbitrary ,Th. 3 implies h ϵ R (g). 

Theorem9 If f1 ϵ R(g) & f2 ϵR(g) then f1 + f2 ϵR (g) and ∫b
af1 + f2 dg =  ∫b

af1dg + ∫b
a f2dg 

Proof : If f = f1 + f2 ,and P is any partition of [a ,b] ,let m’r, M’r , M”r ,m”r &mr, Mr 

be the inf &Sup of f1 ,f2  & f then we have m’r  ≤ f1 ≤M’,   m”r ≤ f2 ≤ M”r   &  

mr ≤ f ≤ Mr ⇒  m’r + m”r  ≤ f1 + f2 ≤ M’r + M”r   and  mr  ≤ f1 + f2 ≤ Mr ⇒ 
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 m’r + m”r   mr ≤ Mr ≤ M’r + M”r   ---------- (1) .now by (1) we have the inequality 

 L(P,f1,g] + L(P,f2,g]   L (P,f,g+ ≤ U*P,f,g+ ≤ U*P,f1,g] + U[P,f2,g] ----------------(2) 

If f1 ϵ R(g) & f2 ϵR(g) let ɛ >0 be given ,there are partitions Pj (j =1,2)such  

[Pj, fj, g]– L(Pj, fj, g] < ɛ .in these inequalities if P1 & P2 are replaced by common 

refinement P then  (2) implies U[P,f g]– L(P,f, g] <2ɛ ,since f1 & f2 ϵ R(g)  which 

proves that f ϵ R (g) 

With partition P,we have U[P,fj ,g] < ∫b
af jdg  + ɛ             (j= 1,2), then (2)  implies 

that ∫b
afdg    U[P,f,g] < ∫b

af 1dg + ∫b
af 2 dg +2ɛ since ɛ is arbitrary we have 

∫b
afdg   ∫b

af 1dg + ∫b
af 2 dg    ----------------(3 ) ,if we replace f1 & f2  by - f1 &- f2   the 

inequality  (3) reversed i.e. ∫b
afdg   ≥ ∫b

af 1dg + ∫b
af 2 dg    ----------- ---(4) hence by  

(3)  &  (4) we get the result. 

 Theorem10:   (a) If f ϵ R (g) on [a ,b] then f
2ϵ R (g) on [a ,b] 

                           (b)  If f ϵR (g) and g ϵ R(g) then fg ϵR(g) 

proof : (a)  since f is bounded on [a,b] hence Ǝ,  M> 0 such that |f(x)| M, 

 ⩝ xϵ [a ,b].Since fϵ R (g) and therefore for a given ɛ > 0 Ǝ a partition P such 
that  U[P,f, g] – L[P,f,g] <ɛ /2M ------ (1) .Let Mr ,mr  and M’r, m’r be respectively 

the Sup and Inf of f and f2 in [xr-1,xr- then for any two points ζ1 and ζ2 ϵ [xr-1,xr],    

wehave |f2(ζ1)–f2(ζ2)|=|f(ζ1)+f(ζ2)|.|f(ζ1)-f(ζ2)|≤*|f(ζ1)|+|f(ζ2)|+.|f(ζ1)- f(ζ2)|≤ 

{M+M.f(ζ1)-f(ζ2)|.This suggests that M’r - m’r ≤ 2M(Mr- mr)⇒∑n
r=1( M’r –mr’ )δgr  
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  2M∑n
i=r ( Mr –mr )δxr⇒U[P,f2,g]- L[P,f2,g-≤2M{U[P,f,g]-L[P,f,g]}≤2M (ɛ/2M)=ɛ  

by(1) ⇒ U[P,f2,g]- L[P,f2,g] <ɛ ,hence f2 ϵ R (g). 

     (b)we take φ(t) = t
2
 Theorem 8. Shows that f

2
 ϵ R (g)  if  f ϵ R (g).The identity 

         4fg =  (f + g)
2
 – (f - g)

2
 completes the proof.  

Theorem11 : If  f1    f 2 then ∫b
af1dg    ∫b

a f2dg 

Proof :As f1 (x)   f2(x) ,hence f2(x)  - f1(x) ≥0 on*a,b+ and g is monotonically 

increasing in [a,b] so g(b) >g(a) and ∫b
a  (f 2 – f1 ) dg ≥0 ⇒   ∫b

a  f 2dg – ∫b
a  f1  dg ≥0 

this implies ∫b
af1dg    ∫b

a f2dg. 

Theorem 12: If f ϵ R(g) on [a ,b] and if a < c < b then f ϵ R(g) on [a, c]and [c, b] and 

                ∫b
afdg  = ∫c

a fdg + ∫c
b
 fdg. 

Proof :  Since f ϵR (g ) on [a,b] ,given ɛ > 0 Ǝ a partition P such that 

 U(P f,g ) – L(P,f,g) <ɛ ------(1) break partition P = {x0,x1---xr-1 ,xr =c –----xn-1,xn} such 

that xr = c then U(P,f,g)  =  ∑n
i=1 Mi δgi   = ∑r

i=1Mi δgi   + ∑n
i=r+1 Mi δgi  ----------(2)   

and     L(P,f,g)  = ∑n
i=1 mi δgi   = ∑r

i=1 mi δgi  + ∑n
i=r+1 mi δgi    ------------------------------(3)  

Subtracting (2) &(3) and using (1) we have ∑r
i=1 (Mi - mi)δgi + ∑n

i=r+1( Mi –mi )δgi  < ɛ 

i.e. ∑r
i=1 (Mi - mi)δgi < ɛ  and ∑n

i=r+1 ( Mi –mi )δgi  < ɛ -------------------(4) ,also f ϵ R (g) ⇒ f is bounded in[a, b] ⇒ f is bounded in [a,c] & [c,b] both -- ----(5) therefore 

 fϵ R(g)on [a,c] and f ϵ R(g) on [c, b] by (4) & (5).  Again we have  
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∑n
i=1 Mi δgi  = ∑r

i=Mi δgi  + ∑n
i=r+1 Mi δgi whence making||P|| →0 , by  definition of 

R-S sums we get    ∫b
afdg  

 = ∫c
a fdg + ∫c

b
 fdg,  hence the result. 
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                                                   LECTURE – 4     

Today we shall discuss some more theorems on R-S Integral 

Theorem13 :  If f ϵ R(g1) and f ϵ R(g2) then f ϵ R (g1 + g2 ) and  ∫b
afd (g1 + g2)  

                  = ∫b
a fdg1 + ∫a

b
f dg2 fdg2. 

Proof : Since fϵ R(g1) so there exists a partitionP1 such that 

 U(P1,f,g1) - L(P1,f,g1) < ɛ ---------------------- (1) and as f ϵ R(g2) so there exists a 

partition  P2 such that   U(P2 f,g2) - L(P2,f,g2 )  < ɛ ---------------(2) 

Let P  be the common refinement of P1 & P2 i.e. P =P1 ᴜ P2 then from (1) & (2) we 

have U(P, f,g1 ) -  L(P,f,g1) <ɛ  -----------  (3) & U(P, f,g2) - L(P,,f,g2 ) < ɛ ------------(4) 

Let g= g1+g2thenconsider∑n
i=1Mi [g (xi )-g (xi-1 )+=∑n

i=1 Mi [(g1 +g2)(xi )–(g1+g2) (xi-1)]  

=∑n
i=1 Mi[ (g1 +g2)(xi ) (g 1 +g2) (xi-1 )+=∑n

i=1Mi [(g1( xi )- g1(xi-1)++∑n
i=1Mi[(g2 (xi  )-g2(xi-1)]. 

Thus U[P,f,g,] = U[P,f,g1]+ U[P,f,g2] ----------- (5). Similarly it can be proved that  

L[P ,f ,g] = L(P,f,g1 ] + L(P,f,g2]  -------------------------(6)  so, U[P, f, g,]- L[P, f ,g] = 

 U[P,f,g1]- L(P,f,g1 ] + U[P,f,g2 ] -L(P,f,g2] <ɛ ,hence f ϵ R (g1 +g2 ) as g= g 1 +g2 By (5)  

we get inf.U*P,f,g+ ≥ inf.U[P,f,g1] + inf. U[P,f,g2]  so ∫b
af dg  ≥ ∫b

a fdg1 +∫a
b
f dg2----(7) 

   and U[P,f,g,] = U[P,f,g1]+ U[P,f,g2]⇒  ∫b
afdg   ∫b

a fdg1 +∫a
b
f dg2  --------------------(8)  

by (7) & (8) we have      ∫b
afd (g1 +g2) = ∫b

a fdg1 +∫a
b
f dg2 fdg2. 

Theorem14 : If  f ϵ R(g)on [a ,b] and c is a positive constant then f ϵ R(cg) and 

 ∫b
af d (cg ) =c ∫b

afdg   
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Proof : As f ϵ R(g)on [a, b),so for given ɛ > 0 there exists partition P such that 

U[P, f, g,] - L[P, f, g]<ɛ/c ⇒ ∑n
i=1 Mi [(cg(xi) - cg(xi-1)] - ∑n

i=1mi [(cg(xi  ) - cg(xi-1)] < ɛ ⇒ U[P, f, cg]–L[P, f, cg] < ɛ, so f ϵ R (cg) on [a, b]. Also as L[P ,f, cg] = ∑n
i=1mi c δgi 

= ∑n
i=1mi [(c{g(xi  ) - g(xi-1)}+  = c ∑n

i=1mi δgi = c L[P,f, g]. As ∫b
afd(cg) = Sup L[P,f, cg]  

= c Sup L[P,f, g]= c ∫b
afdg . Hence   ∫b

afd(cg)  = ∫b
afdg  is proved 

 

Theorem15:If fϵ R(g) on *a,b+and if |f (x)|  M on[a,b],then| ∫b
afdg|  M [g(b) - g(a)] 

Proof : Since |f(x)|   M  i.e. –M    f(x)   M we have  

M [g (b)–g(a)]   |∫a
b 

f(x) dg|   M [g (b) - g(a)], by Mean value Theorem we 

have      |∫a
b 

f(x) dg| = M[g (b) - g(a)]. Hence proved 
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                                                     LECTURE -5 

Today we will discuss  the theorem which states the relation betwwen RIEMANN 

& R-S Integral  (Th.16),First Mean value Theorem and some other Theorems 

&cor. 

 Theorem16 : Assume g is monotonically increasing and g’ϵ R on [a,b].Let f be 

bounded real function on[a ,b] then f ϵ R (g) if and only if  f g’ ϵ R (g),in that case 

         ∫b
a fdg  = ∫b

a f (x)g’(x)dg ----------- (1) 

Proof : Let ɛ > 0 be given, since g’ϵ R  then by Th. 3 to g’ , there is a partition 

 P = { a = x0,x1,x2-------xn-1,xn=b } of [a ,b] such that U[P, g’+ - L[P, g’+ < ɛ.----------(2).  

The Mean value theorem furnishes points  ti ϵ [xi-1,xi+,such δgi = g’ (ti)  δxi , 

for i=1,2,---n. If si ϵ [ xi-1,xi] then  ∑n
i=1  |g’ (si )- g’ (t i)| δxi  < ɛ ----------------------- (3)  

By (2) & Th. 4. Now Put M = Sup |f(x)|,since ∑n
i=1 f(si) δgi = ∑n

i=1 f(si)g’(ti) δxi ,it 

follows from (3) that | ∑n
i=1 f(si) δgi - ∑n

i=1  f(si)g’(ti) δxi|   Mɛ. ------------------(4).  

In particular   ∑n
i=1f(si) δgi   U*P, f+ + M ɛ, for all choices of si ϵ [ xi-1,xi], so that 

  U* P, f, g+   U*P, f, g’+ + M ɛ,  the same argument leads from (4) to 

 U[P,f g’+   U[P,f g] + Mɛ .Thus |U[P,f,g] - U*P,fg’+ |   Mɛ. ------------------------ (5) 

Now (2) is true if P is replaced by any refinement, hence (5) also remains true .We 

conclude that | 
 ∫a

b 
f(x) dg - 

 ∫a
b 

f(x)g’ (x) dx|  M ɛ.  But ɛ is  arbitrary ,hence  
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 ∫a

b 
f(x) dg = 

 ∫a
b f(x)g’(x)dx for any bounded function f. The equality of the lower 

integrals follows from (4) in the same manner. Hence the theorem is proved. 

 

Theorem 17 : Let f ϵR (g) on [a, b] then m [g(b) – g(a)+   ∫a
b 

f(x) dg   M [g (b)- g (a)] 

 Proof : We have m    mr   Mr   M therefore ∑n
r=1 m δgr   ∑n

r=1mr δgr  ∑n
r=1Mr δgr   

∑n
r=1M δgr  i.e .[g(b) - g(a)]   L(P,f)   U(P,f)   M [g (b) – g(a)].But L[P,f,g]    ∫a

b 
f(x) dg 

  −∫a
b 

f(x)   M *g (b) - g(a)]. Since f ϵ R (g) hence  
 ∫a

b 
f(x) dg = −∫a

b 
f(x) = ∫a

b 
f(x), it 

follows that  m[g(b) – g(a)]     ∫a
b 

f(x) dg    M [g (b) - g(a)]. Hence proved. 

Cor1.  If f ϵ R (g) then Ǝ a number ζ lying between m & M such that  

                            ∫a
b 

f(x) dg  =   ζ ,g (b) – g(a)] --------------------------------- -(1) 

Proof: As we have proved m [g (b)– g(a)]    ∫a
b 

f(x) dg   M [g (b)–g(a)].--------(2) 

Then Ǝ a number ζ  such that m   ζ   M it follows that ∫a
b 

f(x) dg = ζ ,g (b) – g(a)] 

Cor2.First Mean value theorem : If f is continuous and real , g is monotonically 

increasing on [a, b- ,then Ǝ a point c ϵ(a, b)such that∫a
b 

f(x)dg = f(c)[g (b)- g(a)] 

Proof : From above cor.1,we have ∫a
b 

f(x) dg = ζ,g (b)- g(a)],f is continuous in 

 [a, b] and m   ζ   M ⇒ Ǝ c ϵ [a, b] such that f(c) = ζ -----------(3) ,by (1) & (3) we 

have    ∫a
b 

f(x)dg  = f(c)[g (b) - g(a)] 

Cor. 3: If f ϵ R (g) and if |f(x)|   k on [a, b] then |∫a
b 

f(x) dg| = k [g (b) – g(a)] 

Proof : Since |f(x)|   k  ie. –k    f(x)   k, we have  
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-k [g (b)–g(a)]   |∫a
b 

f(x) dg|   k [g (b) - g(a)], by Mean value Theorem we have 

|∫a
b 

f(x) dg| = k [g (b) - g(a)]. Hence proved 

Integration and Differential Theorem 18 : Let f ϵ R on [a, b] .For a   x   b ,put 

F (x) = ∫a
b 

f(t) dt ,then F is continuous on [a, b] ,furthermore, if f  is continuous at a 

point x0 of [a, b] ,then F is differential at x0 , and F’ (x0) = f(x0). 

Proof : Since f ϵ R ,f is bounded .  uppose |f (t)|   M ,for a   t   b. If a   x   b ,then 

| F (y) – F (x)| = | ∫y
x
 
f(t) dt|   M (y - x) .By Th. 14 & 15 given ɛ, we see that 

 |F(y) – F (x)|< ɛ provided that |y - x| < ɛ/M .this proves continuity & in fact 

uniform continuity of F. Now suppose f is continuous at x0 ,hence given ɛ > 0 

,choose δ > 0 such that |F(t) - F (x0)|<ɛ if |t - x0|< δ and a   t    b .hence if  

       x0 - δ   s   x0   t   x0 + δ and a   s   t   b, we have by Th.15  

      {F(t)- F (s)/(t-s)}-f(x0)| 

      =|1/(t-s) ∫a
b
{

 
f(u)- f (x0)} dg|<ɛ it follows that F’(x0)= f (x0). 
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                                                       LECTURE -6 

Now we will study about Fundamental Theorem of calculus ,integration by parts 

and some problems on R-S Integral 

Theorem19 : The Fundamental Theorem of Calculus: If f ϵ R on [a, b] and if there 

is a differential function F on [a, b+  such that F’ = f ,then ∫a
b 

f(x) dx  = F(b) – F(a) 

Proof :  Let ɛ >0 be given , choose a partition P = { a= x0,x1,x2-------xn-1,xn =b } of 

 [a, b] so that U[P, f] - L[P, f] < ɛ ,the mean value theorem furnishes points 

       ti ϵ [xi-1 ,xi]  such that F (xi) - F(xi-1) = f(ti) δxi ,    for i =1,2,--------n  thus 

        ∑n
i=1 f(ti) δxi = F (b) - F(a) ,it follows from Th. 4 that |F (b) -F(a) - ∫a

b 
f(x) dx |< ɛ 

,this holds for every ɛ > 0  hence the proof is complete. 

Theorem20: Suppose F & G are differential function on [a ,b+ ,F’=f ϵR & G’=g ϵR 

then ∫a
b 

 F(x)g (x) dx = F (b) G(b) – F(a) G(a) - ∫a
b 

 f(x)G (x) dx. 

Proof :   Put H (x) = F(x) G(x) and apply Th.17 to H and its derivative, from this  We 

have   ∫a
b 

 H’(x) dx = H(b) - H (a)  -----------(1)   [because ∫a
b 

 F’(x) dx = F(b) - F(a)]. 

Now H’(x) = F’ (x) G (x) + F (x) G’(x) = f (x) G(x) + g (x) F(x) then from (1) we have 

     ∫a
b 

 H’(x) dx =∫a
b  

{ f (x) G(x) + g (x) F(x)} dx  = H(b ) -H (a) =  F(b) G (b) – F(a) G(a) 

    =   ∫a
b  

f (x) G(x) dx +∫a
b  

g (x) F(x) dx, thus we have  

     ∫a
b 

F (x) g(x)dx = F (b) G (b) - Fa) G(a) - ∫a
b  

 f (x) G(x)dx.Hence proof is complete 
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       Now We solve  Some problems on R-SIntegral : 

           Prob.1 : Evaluate RS ∫1
0

 
 xdx

2
  

Sol. Since x is continuous and x
2
 is increasing in [0,1] RS ∫1

0
 
 x dx

2
 exists .to find its 

value ,consider the partition P = { x0 =0,x1,x2-------xn-1,xn =1 }where xr = r/n let 

 ζr ϵ [xr-1,xr}  then ∑n
r=1 f( ζr) δgr  =∑n

r=1  xr ( x
2
 r - x

2
 r-1 ) = ∑n

r=1{ (r/n) (r/n)
2
 –( r-1/n)

2
} = 

1/n
3
 ∑n

r=1r(2r-1)=1/n
3
[2∑n

r=1 r
2
-∑n

r=1 r] = (n+1) (4n -1)/6n
2
=Limn→∞(n+1) (4n -11)/6n

2 
 

= (1) (4) /6 = 2/3  

Another method : Since f (x) = x is R - Integrable and g(x) = x
2
 is differentiable on 

[0,1] then  by Th.16, we have R ∫1
0

 
 xdx

2 
=∫0

1
 x2x = 2∫1

0
 
 x 

2
 dx= 2/3 

Prob.2 : Evaluate the following  (1) ∫2
0

 
 x

2
 dx

2
        (2) ∫1

0
 
 x 

2
 dx

2
 

Sol. Here we use the result ∫a
b 

 fdg = ∫a
b 

 fg’dx 

(1) ∫2
0

 
 x

2
 dx

2
  =   ∫2

0
 
 x

2 
(2x) dx  =2  ∫2

0
 
 x

3  
dx = 2/4 (2

4
) = 8 

(2) ∫1
0

 
 x 

2
 dx

2
 = ∫1

0
 
 x 

2 
(2X) dx =∫1

0
 
 x 

3 
dx= 2/4 (1)

4
 = 1/2  

Prob3:  Find the value of  ∫2
-1

 
 x

3
 d |x|

5 

Sol:  We have ∫2
-1

 
 x

3
 d |x|

5
 =∫0

-1
 
 x

3
 d (-x)

5 
+∫2

0
 
 x

3
 d (x

5
) = -5∫0

-1
 
 x

7
 d x

 
+ 5 ∫2

0
 
 x

7
 d x = 

5/8 +160 

Prob.4:    Evaluate ∫2
0 [ x] dx

2
  

Sol: ∫2
0 [ x] dx

2 
 =∫2

0 [ x] 2x dx = 2 ∫1 
0

 
[ x ]x dx +2∫1 

2 
 [x]x dx=2∫1 

0
 
0 x dx+2∫1 

2 
 1.x dx= 

0 + (x
2
)1 

2  
= 4 -1 =3 


