Experiment No. 4

Object: Estimation of Oxalic acid by using standard KMnO_{4} solution.
Theory: In acidic medium, KMnO 4 is strong oxidizing agent. It oxidizes oxalic acid into CO_{2}

OR

$$
2\left[\mathrm{MnO}_{4}\right]^{-}+\left[\mathrm{C}_{2} \mathrm{O}_{4}\right]^{-2}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{+2}+8 \mathrm{H}_{2} \mathrm{O}+1 \mathrm{OCO}_{2}
$$

Chemical required: $\mathrm{N} / 30 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{~N} / 30 \mathrm{KMnO}_{4}$, unknown $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ solution and $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$.
Apparatus required: Conical flask, burette, pipette, beaker and funnel.

Procedure:

(a) Fill burette with KMnO_{4} solution. Note the initial reading. Pipet out 25 ml of standard fresh known oxalic acid solution in a clean conical flask and add to it 5 ml of $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$. Run KMnO_{4} in solution from the burette till the color of the solution becomes light pink which indicates the end point.
(b) Same procedure is also performed with the unknown solution of oxalic acid.

Note: Both the procedures $(a+b)$ are repeated three times for getting concordant reading.

Observation:

(A) Titration with known solution of Oxalic acid.

S.No.	Vol. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ used (ml)	Burette reading (ml)			Vol. of KMnO_{4} used (ml) V_{1} C.R
		Initial	Final	Difference	
1.	25	0.0	\ldots	-----	
2.	25	-------	\ldots		
3.	25	\ldots			

(B) Titration with unknown solution of Oxalic acid.

S.No.	Vol. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ used (ml)	Burette reading (ml)			Vol. of KMnO_{4} used (mI) V_{2} C.R
		Initial	Difference		
1.	25	0.0	\ldots	----	
2.	25	-----	\ldots		
3.	25	\ldots			

Calculation: Suppose the volumes of KMnO_{4} with known and unknown Oxalic acid solutions are V_{1} and V_{2}. The normality of unknown $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ soln. is N .

$$
\begin{gathered}
\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
\mathrm{~N}_{\mathrm{KMnO4}} \mathrm{~V}_{\mathrm{KMnO4}}=\mathrm{N}_{\mathrm{KNOWNO.A}} \mathrm{~V}_{\mathrm{KNOWNO.A}} \\
\mathrm{~N}_{\mathrm{KMMnO} 4}=\frac{1 \times 25}{30 \times \mathrm{V}_{1}} \\
\mathrm{~N}_{\text {unknown O.A }} \mathrm{V}_{\text {unknown O.A }}=\mathrm{N}_{\text {KMnO4 }} \mathrm{V}_{\mathrm{KMnO4}} \\
\mathrm{~N}_{\text {unknown O.A }}=\frac{1 \times 25 \times \mathrm{V}_{2}}{30 \times \mathrm{V}_{1} \times 25}
\end{gathered}
$$

Equiv. Weight of oxalic acid $=37$ gm. equivalent

$$
\mathbf{N}=\frac{\mathbf{V}_{2} \times 37}{30 \times V_{1}} \mathrm{gm} / \text { litre }
$$

Result: The strength of unknown oxalic acid solution is \qquad gm/litre.

Precautions:

