

MBT 2001P; Molecular Biology and Genetics (Practical)

Molecular Cloning; Basics of Plasmid, Isolation and Purification

Dr Chandresh Sharma

Assistant Professor

Department of Life Science and Biotechnology

Chhatrapati Shahu Ji Maharaj University, Kanpur

Overview

Introduction

Molecular Cloning and Plasmid Vectors

Plasmid Isolation and Purification

Cloning and expression of target gene

Cloning Process

- ✓ Gene of interest is cut out with restriction enzymes (RE)
- ✓ Host plasmid (circular chromosome) is cut with same REs
- ✓ Gene is inserted into plasmid and ligated with ligase
- ✓ New (engineered) plasmid inserted into bacterium (transform)

Cloning (Details)

Cloning (Details)

protein

Protein Expression Bottleneck

- Protein Biochemistry
 - soluble, purifiable protein
- Enzymology
 - soluble, active protein
 - 0.1-10 mg of protein
- Crystallography
 - soluble, crystallizable protein
 - 5-100 mg of protein

Which Vector?

- ✓ Must be compatible with host cell system (prokaryotic vectors for prokaryotic cells, eukaryotic vectors for eukaryotic cells)
- $\checkmark {\sf Needs}$ a good combination of
 - strong promoters
 - ribosome binding sites
 - termination sequences
 - affinity tag or solubilization sequences
 - multi-enzyme restriction site

Plasmids and Vectors

- ✓ Circular pieces of DNA ranging in size from 1000 to 10,000 bases
- \checkmark Able to independently replicate and typically code for 1-10 genes
- ✓ Often derived from bacterial "mini" chromosomes (used in bacterial sex)
- ✓May exist as single copies or dozens of copies (often used to transfer antibiotic resistance)

Key Parts to a Vector

- ✓Origin of replication (ORI) DNA sequence for DNA polymerase to replicate the plasmid
- ✓ Selectable marker (Amp or Tet) a gene, when expressed on plasmid will allow host cells to survive
- ✓ Inducible promoter Short DNA sequence which enhances expression of adjacent gene
- ✓ Multi-cloning site (MCS) Short DNA sequence that contains many restriction enzyme sites

Basic elements of a plasmid/vector

pET developed by WF Studier & BA Moffatt in 1986

- **1) Ap** = ampicillin resistance
- 2) ori = ColE1/pBR322 origin of replication
- 3) lacl = lac repressor; bind lacO until IPTG induction
- 4) T7P = T7 Polymerase promoter
- 5) lac0 = lac operator where lac repressor binds
- 6) **→**= multiple cloning site

Gene Introduction (Bacteria)

Bacterial Transformation

Bacterial Transformation

- \checkmark Moves the plasmid into bacterial host
- \checkmark Essential to making the gene "actively" express the protein inside the cell
- ✓ 2 routes of transformation
 - CaCl₂ + Temperature shock
 - Electroporation
- ✓ Typical transformation rate is 1 in 10,000 cells (not very efficient) for CaCl₂, but 1 in 100 for electroporation

Electroporator

25 microfarads = 2500 V @ 200 ohms for 5 ms

Electroporation

- Seems to cause disruption in cell membrane
- Reconstitution of membrane leads to large pores which allow DNA molecules to enter
- Works for bacteria, yeast and animal cells

References

 Protocol: <u>https://sci-hub.se/10.1101/pdb.prot093344</u>
Youtube: <u>Lecture 41 : Isolation of Plasmid DNA – YouTube</u> <u>https://www.youtube.com/watch?v=Jyk2RzkxUXw</u> <u>https://www.youtube.com/watch?v=04oLyd2mZv8</u>

Acknowledgement

For Query

chandreshsharma@csjmu.ac.in; sharmac3001@gmail.com