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Function of Bounded variation
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LECTURE -1
Now today we will study about functions of bounded variation and its

properties.

Definition- Functions of bounded variation consider a function f defined on [a,

bl. let P = {a = Xy, X; - X, = b1| be any partition of [a, b]. The number

n n

v(f,P) =D i =D f(x,)-f(x,)| is called the variation of f

r=1 r=1

corresponding to P.

Thus f has bounded variation on [a, b] if 3 or there exists

K >0, suchthat V(f,P, <K V PP [a,b]

Where P [a, b] denotes the family of all partitions of [a,b].............

V [f, (a,h)] =Sup {V(f,P): P eP[a,h]thenv[f,(a,h)lis
writev (f [a, b)) is defined to be the total variation of f on [a, b]

defined to be the total variation of f on (a, h)

clearly if f has bounded variation on [a, b]and a < c¢ <b, then f is on bounded

variation of [a,c] and [c,bland V (f, [a,b])= V(F, [a,c])+ V(£, [c.B])ecoencc..... )
Theorem 1: If f is of bounded variation on [a, b], then f is bounded on [a, b]

Proof: f is of bounded variation on [a, b]

= 3k > 0 such that v {f,p} <k
= v(f, [a, b]) <M.

Also |f (x) —f (a)| <v

f,[a,b]<M Vxe

a,b)

Now|f (x)—f (a) | <M = |f (x)|—[f (a)| <M



=f x)|[<M+f (a)Vxe(a,b)
= f (x) is bounded on (a,b)

Theorem 2:If the derivative f' (x) exists and is bounded in closed internal

[a,b]then the function f is of bounded variation.

Proof: Let p = {a =X, ...x, = b} he a partition of closed internal [a, b]
Write v (8, P)=Y|f (x,)—f(x, )| r=12...n )
r=1

andV (f, [a, b])=sup {v (f,P). PeP[a,bl} )
Since {' (x) is bounded in [a, b]3 K> 0 such that |f ' (x)| <KVxe(ab)— (3)

By Lagrange's mean value theorem

FOD =0 ) _ (2 where £(a,b)
(Xr _Xr_1)

= fx)-fx) =&, =x,_ D" (E)

4)

SF)-f (x| = (x, —x,DIf'E)
For x,;<x.forr=1,2-n.

X —X

r r—1

= (X, =X, )
Using (3) and (4) we get
f(x)-f(x,)|< (x,—x,) K (5)

Using (5) in (1) we get
v (f,P)= Zn:(xr -x, DK =K(x, -x,) =k (b—a)

Takingsupremum of both sides and from (2) we get

v (f,[a,b])=k(b-a)
=v (f, [a,b])is finite

Consequently f is bounded.



Theorem:3If cc [a, b] then show that f is bounded variation on [a, c] and [c, b]

iff f is of bounded variation on [a, b].
Also prove that
V {, [a,b] =V ({, [a,c] + V (1, [c,b] )
Solution Let P, = {a =X, X1, X5.....X, =}
and P,={yo=c, y1, ¥2,...... Ym= b}
wherex, =yo=cand P =P;UP,,
Then P = {a = X, Xj....... » Xn=C=1Y0, Y1, Y2:-o-e.Yn = b}
Evidently P, P,, P are respectively partitions of [a, c], [c,b] and [a, b]
Step: 1. Suppose f is of bounded variation on [a,b].
To prove that f is of bounded variation on [a, c]and [c, b] both.

By assumption, V (f, [a, b] = finite =k, say.

Evidently Zn]f. (x,)—f (x,_)| + Zn]f. (y)—f(y,)| SV(f,[a,b]) =k

r=1 r=1

Write S; = D ff. (x,)=f (x, )| oo DI (v)~F(y,,)
r=I1 r=|

Then Sy, S;> 0and S| +S,5k, S; <Si+ S,k
or Si<k, S,<Xk
Taking supremum over all partitions P; and P,
V (£, [a,c]) <k, V (f,[c,b] <k
This = f is of bounded variation on [a, c] and [c,b] both.
Step II. Let f be of bounded variation on [a, c] and [c, b] respectively. Then

V (f, [a,c]) =k, =finite,
V (f, [c,b]) =k, =finite,

Aim f is of bounded variation on [a, b].



LetP={a=2y, 27, Zocecc.., Zy = C, Zpi1s cevers ,Zm = b } be a partition of [a, b]

Then

n n m

Y z) -tz ) =D [f. @)~ @ )|+ D z)-f(z.)

r=1 r=1 r=n+l

<V(,[a, c]) +V ({,[c, b] =k; +k, = finite

or Zn]f. (z,)-f(z,,)| <k, +k, =finite (1)

P
This = f is of bounded variation on [a, b].
Also, by (1)

V(f,[a, b]) £V (f,[a, c]) +V(f,[c, b]) (2)
Step III: f is of bounded variation on [a, c].

=givene> 0 3 a partition P, = {a = x(, x point x, = C}

Such that i|f (x,)—-f(x,) >V(f,[a,c])—§ 3)
r=1

Similarly f is of bounded variation on [c, b]

gives ) If. (y,)—f (v,

r=1

: >V<f,[c,b])—§ 4)

Adding (3)and (4), we get

DI = )+ DI )~ F (v,0)

SV ([a, c]) + V (f[c, b]) -&

or  V(f[a,b])>V (f,[a, c))+V (f,[c,b]) -&

Making &> 0, we get

V (f,[a, b]) 2V (f,[a, c)+V (£,[c, b]) (5)
(2) and (5) = V (f,[a, b]) = V (f,[a, c])+V (f,[c, b]) wherea<c<b.

-V (f, [a, b]) =k, + ks = finite

=1 1s of bounded variation in [a,b]



LECTURE -2

we will study about variation function and its properties and theorem based
on it.

Def. Variation Function, Let f be a function of bounded variation on [a, b]
and x € [a, b]. The total variation of f on [a, c] is denoted by V (f, [a, x) which
is clearly a function of x.

Write v (x) = v(f, [a, x])

Then v; (x) is defined as variation function or total variation function of f.

Sometimes we also writev; (x) = v (X).

Let x4, X,, € [a, b] be arbitrary s.t. X;< X,.

Since V (f[a, b]) = V (f,[a, c]) +V (£,[c, b])
and so V (f,[a, b]) - V (f,[a, c]) =V (£,[c, b])

Hence V (f[a, xo]) - V (£,[a, x;]) =V (£[ x1,Xa]) (1)

or Vv (X0) - v (x1) =V (£, x1,X5]) )
Since 0d f(xp) - f (x1) | <V (£,[x1.X5])

Using (2), we get  v(Xp) -v(xq) =0

or V(X)) 2V (xy)

Thus X< Xp=> v (X1) <v(X»)

This = v(X) is monotonic non-decreasing function on [a, b].

Theorem 4: The variation function v(x) of a function of bounded variation is

continuous iff f is a continuous function.

Proof.Let f: [a,b] &> R be a map. Let x, ¢ € [a,b] be arbitrary but x < c.

We have v(x) =V (f, [a, x]) (1)
0 < f(x)-f (©)| <V (f[x, c]) (2)
and V&, [x,c]=V{,ac]-V{,][ax] 3)

By (2) and (3), we get

0< f(x)-f(©)| <V (f[a, c])- V (£, [a, x])



=v(c) - v(x)

or 0 f(x)-f(c) < v(c) - v(x) (4)
x < ¢ = v(x) <v(c)as v (x) is monotonic increasing function .
4 =04 fx)-f©)l<v©) - v(x) 4"
Let f be a function of bounded variation so that

v(c), v (X)< finite number 5
Step 1. Let v(x) be continuous on [a, b] (6)
Aim: f(x) is continuous on [a, b].
For this we show that f(x) is continuous at X = c.
By (6) given &> 0, 36> 0 s.t.

x =] <8 =|v(x) —v(c)| <e (7)
Using (4) in (7) we get

|f(X)—f(C)|<8 for | x—c| <o
.. f(x) is continues at X =c.
Step II. Let f (x) be continuous on [a, b]
Aim.v(X) is continuous on [a, b] .

By assumption, given €> 0, 36> 0 s.t.
x —d <8 :>|f(x)—f(c)|<§ (8)

-.- f is bounded variation

S 3 parttition p =[C X, Xjeerennn ,X, =b}of [c,b]

st zn]f. x)-f(x_),>V (f,[c,b])—% )

Further suppose that length of first sub-interval x; - c is less than d. By doing

this change, (9) will remain uneffected.

= ()<|x1—c|=x1—c<8



and by 8)  [f(x,)~f(c)< % (10)
and by (8) and (9)

If(x,) —f(c) |.+i|f. (x,)-f(x,_,)

S
V (f,[e,bD)—=
’> ( $[C’ ]) 2

or V(f,[e,b) =D [f. (x,) - (x, )], < |f(xl)—f(c)|+§
r=2
€ &
Z4== 10).
<2+2 g,by (10)

or V (, [e,b]) - V ({, [xy, b]) <e
or V({, [c, xq]) <& (11)
But  V(f,[a,b]=V ({, [a,c])+ V ({, [c, b])
V(, [a,b] -V ({, [a,c]) =V (1, [c, b])
or V(, [a, x1] -V (f, [a,c]) =V ({, [c, x1]) <g, by (11)
or V{, [a, x1] - V (f, [a, c]) <e
or v(x1)- v(c)<e
or |v (xl)—v(c)| <g v(x) is an increasing function.
for | xl—c| <5
This = v(X) is continuous at X = C.
Theorem S: A monotonic function is a function of bounded variation.
or
Let be monotonic function and bounded on [a, b]. Then f is bounded variation
on [a, b] and v(f) =] f(b)- f(a)
Proof: let f : [a, b] — R be a monotonic function.

Let P = {a = x,, X;, Xp,......, X, = b} be a partition of [a, b]
Then v (£,P) =) [f(x,)—f(x,.) (1)
r=l1

Case 1: When f is monotonic increasing function



X< Xo= (X)) < (%)= f(x,)-f (x1) >0
=| f(x)-f(x;)| = f(x2)- £ (x))

Now (1) becomes
v (EP) =Y [f(x)-f(x,.)]

= [f (x1) - f(xo)] + [f(x2)-f(x )] +.....+ [£(Xy) - {(Xq1)]
= f(Xn)- f(X0)=1 (b) -f(a)
or  v(f,P)=|f(b) -f(a)l
as a<b=f(a)<f(b) 2)
Case II: When f is monotonic decreasing.
X< x= (X)) > £ (x) = (x)) - £ (x) > 0

Now (1) becomes
V(£ P) =Y [F (x, )~ F(x,)

= [f (o) - f(x)] + [F(x)-f(x2)] +..oot [f(Xni1) - Fx0)]
= f(xo)- f(x,)= f (a) -f(b)
as a<b=f(a)> f(b) = f(a)-f(b) > 0
v(f, P) =| f(a) - (b) 3)
By (2) and (3),, we have, in either case,
v(f, P) =| f(b) -f (a) | = finite

This = f is of bounded variation

10



LECTURE -3
We will study some algebraic properties of bounded variation

Theorem 6: If f and g are functions of bounded variation on [a, b], then their
sum f + g, product f g and difference f-g are functions of bounded variation on
[a, b]

Proof: Let p = {a = x¢, X|, X2, ....... X, = b } be a partition of [a, b].

v(£,P) =) |f (x,) - f(x,,))

vg.P)=Y e (x,) - g(x,,)

f and g are of bounded variation on [a, b]
=3 kl, k2> Os.t.v (f, P) < kla v (g, P) < kz,
Also they must be bounded on [a, b] and so 3 m;, m,> Os.t.

[f(x)|<m,,

g(x)|<m, Vxela,b]

Step1: To prove that f + g is of bounded variation

v(f +g.P) =) |(F +2)(x,) - (f +2)(x,,)

=)
= D> [f(x) - (x, )} +{g(x,)—(x,.)]
<SPPI -Fx DI+ g(x)—g(x,,)|
= v(f,P) +v(g,P) <k, +k,
or, vif+g P) <k +k
This = f + g is of bounded variation.
Note. Here we have V (f+g. 1) <V (f, ) + V (g,l)where I = [a, b].

Step II: To prove that fg is of bounded variation on [a, b].
v(fg,P) = |(fe) (x,) — (fe)(x, )
r=1

= Sltex)ex))-f (x, g,

11



= Z|f(Xr) {g(xr) —8 (Xr—l) - g(xr—l)} + g(xr—l){f(xr) - f(erl)} |
<>lrex)

lg(x)—g(x, D)+ | ex,,

F(x) = (x,)]

<m, Z|g(xr) —g(X, |+ m22|f (x,)—f(x,
r=1 r=1

= mlv(g, P)+rn2 v(f,P)
<mk, +m, Kk,
or v(fg,P)<mk, +m,k, = finite
This =1fg 1s of bounded variation

Step III: To prove that f - g is of bounded variation.
v(t-g.P) =Y |t ~2)(x) - -g)(x,,)|
r=1

= D)2 = (x, ) —g(x,))|
= Y )-fx, )} - {g(x)—g(x,))
<SSl -f(x, =D [+ g(x) -g(x,,)]
= v(f,P)+v(g,P)<k, +k,
or v(f —g,P)<k, +k, = finite

This = f-g is of bounded variation

Note: Here we have the following results.

V(f +g, 1)< V(f,1)+ V(g,1)
V(f - g, D)< V(£ 1)+ V(g,1)

V(fg,I)<m, V(g,1)+m,, (f,I)
Where I = [a, b],| f(x)| <my, | g(x)| <m,

Theorem 7: If a function f is of bounded variation of [a, b] and if Ik> 0 s.t.

|f(x)|2k V x €[a,b], then % is also of bounded variation.

12



Proof, Let P = {a = X, Xi, X5......, X, = b} be a partition of [a, b]. Then

v [f) - fex,)
Z| f(x,) f(x,,) |

e fx)-f x|
B Z|f (x,)|If x|

< 1%22 If (x,)—f (x,)|= k—lzv(f,P)

1
<_

fx)| k

as  [fx)|2k=

or VG,P] :kizwf,P) ()

Further f is of bounded variation.

v(f,P)<k,, where k, >0.

k
- By (2) V(%,P}<k—; =finite number

% is of bounded variation.

Theorem 8: (Jordan Theorem): A function of bounded variation is

expressible as a difference of two monotone increasing functions.

Proof: Let P = {a = X, X1, Xp, ...... ,X, = b} be a partition of [a, b]. Then

n

v(f.P)=>Jf (x,)-f(x,.)

r=1

v(f,[a,b]) = sup{v(f,P): P eP[a,b]
Let x €[a, b] be arbitrary. Then

v(x) =V (f, [a, x]) is called variation function. We define

13



P(X)=% [v(x) +f(x)] )

q(x)% [v(x) ~£(x)] )

v(x) is a monotonic increasing function.

Evidently X;< X5<X3 ceevcvveerunennns

1 1
I' P(Xz) _P(Xl) = E[V(Xz)+f(xz)]_E[V(X1)+f(X1)]
1 1
or P(Xz) _P(X1) = E[V(Xz)_V(Xz)]+5[f(xz)_f(xl)]
But v(x,)—v(x,) =v(f,[a,x,]) —[v(f,[a,x,])

= v(f, [x,,x,D2[f(x,) - (x))|
P(xz)—P(xl)Z%[v(xz)—v(xl)] + %{f (x,)—1(x,)}=0

or, P(x,)—Px,)=0or P(x,)=P(x,)
Thus X, <x, =Pk, £P(x,)

This proves that P (x) is an increasing function.

II. 4(x,) —q(x,) = %[vm)—f(xzn—%[v(xl)—f(xl)]
= vy = v S G) — £(x))]
- 2 2 1 2 2 1
= o) =L x,) — £(x)]
- 2 1>*2 2 2 1

> %|f(x2)—f(xl)|—%{f(x2)—f(xl)} >0

or  q(X2)-q(x1)20

or q(x2)=z q(x1)

or X1< Xo= q(x1)= q(X7)

This = q (x) 1S monotonic increasing function.

(D) - () gives P(x)-qx)=f(x)

14



or fx) =P (x)-q (%)
This = f(x) is expressible as a difference of two monotonic increasing
functions.

Theorem 9: If is of bounded variation on [a, b], then V =P + N and P-N= f{(b)-
fla), where V, P,N respectively denote total, positive and negative variations of

on [a, b].
Or

T’ =P’ +N! and P’ - N! =f(b)-f(a).

n-1
Proof.let V =Z|f (X)) —f(x,)
r=1

Here the closed interval [a, b] is divided by means of points
a=Xp< X;< X< ....<x, =b.

Let p be the sum of those differences f{x,,;)- f (x,) which are positive. - n that

the sum of those differences which are negative. Evidently
v=P+n, f(b)—f(a)=p—n.
From which we get

v + f(b)—f(a) =2p.

and v — f(b)+f(a) =2n.
ie. v =2p+ f(a)—f(b) (D
and v =2n+ f(b)—f(a) (2)

Set P =sup p, N=sup n, V=supv

where we take the suprema over all possible sub-division of [a, b]. Taking

suprema in (1) and (2).

V =2p+f(a)—f(b) 3)
V = 2N+f(b)—f(a) 4)
upon addition, 2V =2P+2N

15



or V=P+N (5)
(3) - (4) gives

0 =2(P—N)+[f(a)—f(b)
or f(b)—f(a)=P—N (6)
(5) and (6) = required results.

Theorem 10: To prove that a function f is of bounded variation if and only if it
is expressible as a difference of two monotonic functions both non-increasing

or both non-decreasing.

Proof: Let a function f be defined and finite on a closed interval [a, b] so

that f (a) and f(b) are finite numbers. We shall show that

(1) if f 1s of bounded variation then it is represent able as a difference
of two monotonic increasing functions.
(i) If f = g-h, where g and h both are monotonic increasing functions,

then f is of bounded variation.

(1) Let f be of bounded variation. Divide the interval [a, b] by means

of points

n-1
Let v=> [f(x,, - f(x,)

r=0

,supv=V

Let P be the sum of those differences f (x.,;-f (X;) which are positive, - n that

the sum of those differences which are negative
Evidently v=p+n,f(b)—f(a)=p—n
Solving for p and n, we get

v+f(b)—f(a)=2p

v—f(b)+f(a)=2n

(1

= v=2p+f(a)—f(b)
and v=2n+f(b)—f(a)

16



Set P=sup p, N=supn, V=sup v
where the suprema is taken over all possible subdivisions of [a, b].
Taking suprema in (1), we obtain
V =2P+f(a)—f(b) (2)
V =2N+f(b)—f(a) 3)
Further we suppose that V (x), P (x), N (x) respectively denote total

variation, positive and negative variations of f in the interval [a, x], where x <

b. With the help of (2) and (3),

V =2P(x) +f(a) — f(x) 4)

V = 2N(x) +f(x) —f(a) ()
(4)- (5) gives

0 =2[P(x) - N(x)]+2[f(a) - f(x)]
or f(x) = P(x) — N(x) +f(a)
Taking f (a) + P (x) = P' (x) , we get

f(x)=P'(x) - N(x) (6)

It is easy to verify that P (x) and N (x) both are monotonic increasing functions.
P (x) is an increasing function implies that p (x) is also increasing function.

Now the required result at once follows from (6).

(i1)) Let f=g-h, where g and h both are increasing functions, For any mode of

sub-division of [a, b],

V()= JF(x,.) ~F(x,)

where a = X¢< X;< X< .... <X, =b

|f(Xr+1 ) - f (Xr)

=llg(x.) = hx )l -[g(x,) ~g(x,)]

= |[g(x,.) - gx )] -[h(x,,)) —h(x,)]

17



—|h(x,,,) —h(x,)]

= |e(x,.) - g(x,)

+[h(x,,)—h(x,)]

S | g(XrH) _g(xr)

+h(x,,)—h(x,)]

= | g(x,.) —g(x,)

For g and & both are monotonic increasing functions.

Vv :Z|f(xr+l) —f (Xr) SZ[f (Xr+l) —f(Xr)] +Z[h(xr+l) _h(Xr)]

g(b)—g(a)+h(b) —h(a)
= a finite number.
[ Forfis finite valued =g and / both are finite valued ].
v<V(f) £ a finite number

This =f 1s of bounded variation.

18



LECTURE -4

We will study some problems related to absolute continuous function

Theorem11:Every absolutely continuous function is of bounded variation.

Proof.Let f be an absolutely continuous function on a closed interval [a, b] so

that we can select a 0>s.t.
Zn:‘f(bk) —f(a, )‘ <1 whenever i:(bk —a,)<d
k=1 k=1

for all numbers a;, by, a,, bs,......, a,, b,
where a = a;<b;< a,<b,<....... <a,<b,=b.
Again divide the closed interval [a, b] by means of points

a=c,<c, <C,<....<c, =b

in ng parts s.t. Ciyq - Cx<O.

Consequently for any subdivision of [cy, Cy41]

Z| f(x,,) —f(x1)| <lwhere x,,X, € [ck Ck+1]

1.€. Vcckk*‘ <1,
It follows that

Vy (£) =V () + VEE)+.+ V2 (F)

ie. V' (f)<w

Consequently fis of bounded variation.

Theorem 12: If f (x) and g (x) are absolutely continuous functions, then their

sum, difference and product are also absolutely continuous functions. Further if

f(x
g (x) does not vonish for any x, then the quotient Qis also absolutely

g(x)

continuous.

19



Proof. Let f (x) and g(x) be absolutely continuous functions over the closed

interval [a, b] so that

Given € >0,38>0s.t.

Zn:|f(bk)—g(ak)| < ¢ and Zn:|g(bk)—g(ak)| <g

whenever Z(bk -a)<3d
k=1

n?°

a,<b, <a,<b,<...<a <b,

Step (i): To prove that f{x)tg(x) is absolutely continuous over [a, b].

Z| f(b,)+gb,)-I[f(a,)=* g(ak)]|

n n

Y|t -t + Y] eb)-g@,)|
<g+¢

Finally

i|f(bk)ig(bk)—[f(ak)ig(ak)]|< 2¢

k=1
From this the required result follows.

Step (ii): to prove that f(x) g(x) is absolutely continuous over [a, b]

Y| (b )g(b,)~f(a,)g(a,)]
= DIt bplab) —g@)]+g@ ) b)~f@,)]|

<Yt 0, ebo-g@,) + Ye@)] [Fb)~f@,)]
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or Y| )eby)~f(a)g(a,)]

<Y Jfbolleb)-g@|+ D g@)] [Eb)~f @)D

We know that
Absolutes continuity =>continuity
=boundednes
=f(x) and g(x) are bounded in [a, b]
=>f (xX) <My, g (x) <M,, Vx € [a, b].
M, and M, are upper bounds of f{x) and g(x) respectively in [a, b].

In this event (1) takes the form

M (b)lgb)~f(a)] gla)|<e(M,|+M,))
Setting 80M1|+|M2|)=8: we get
DIt bleb) -f@)]+g@,)|<e.

From this the required result follows.

Step (iii): Let g (x) vanish no where in [a, b] so that 35>0 s. t g (X)| >0V xe

[a, b].
f(x) . .
To prove that ( )1s absolutely continuous over [a, b].
g(x
$ L | _$lebo-g@) _ e
= g(b ) g@)| S Jabe,)

8 '
Setting — =€ we get
c

n

1 1
— <éEg
gb,) g(a,)

k=1
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This proves that is absolutely continuous over [a, b].

g(x)

1 f
By step (i1), f (x )——ﬂls absolutely continuous over [a, b]. This

g(x) g(x)
concludes the problem.

Theorem 13: (Integration by parts).Let f and g be functions of bounded

variation on [a, b] and let f be continuous on [a, b]. Then

[ fag=ircogeon, - [ et

~£(b) g(b)~F(a)g(a) - | df

Proof. Let P= {a =x, xi,......., X, =b} be a partition of [a, b] and Q = {a=&, &,,

Eperenns €, = b} be an intermediate partition of P.

so that x,1<E.<x,, forr=1, 2......, n.

From the sum S (f,g,P) =zn: f(&,)dg, (1)

r=l1

Evidently when ||P||:max O, =max (X, —x,,) —0, as n - ocothen
S(f.g.P)=| fdg

By (1) S(f, g, P)= Zf g(x,,)]

=F(& Nglx,) - glxo )1+ £(E, )igls)- g0+t 8, e, )-8lx, )

[adding and subtracting f{ &) g(xy) and re-arranging the terms]

= _(};o)g (Xo)_ [g(xo){f (E.:l )_f(‘tvo )}+ g(xl ){f (‘iz)_f(al )}+
+g(x, N (E,)-FE,)) [+£E,)e(x,)
=l )elx,)-F (5, )2 (x,) }—ilg(xr_l){f(ar)—f(ar_] )

_ I“Zlg(xrl){f (&)-f..)
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= [F(x)g(x)L -S(f, & P, Q)

Making ||P||—> 0 and so also ||Q|| —0, we get

Lb fdg = [f(x)g(x)]: —_Lb fdg

Theorem 14: Second Mean Value Theorem, Let f be monotonic and g be real

valued continuous and of bounded variation on [a, b]. Then 3§ [a, b] such that

[ tdg=1(a)le(e)-gla)]+£0) [elb)-£(e)}

Proof: By Theorem integration by parts.,

[ fdg=f(b)alb)-Fla)gla)- [ wf 1)

By the first mean value theorem 3¢ e [a, b] such that
b
[ st =g(E)lfo)-1(e)]

Using this in (1), we get

[ adf =t (b)g(b)-f (a)ela) -g ©)[f (b)-f(a)]
= f(a)[g(&)—2()]+f (b)[g(b)—e(©)]

13.7 Change of Variable:

Theorem15: Let f and gbe continuous on [a, b] and let ¢ be increasing on [a,

b]. If F is inverse function of ¢, then

Ef(XMX:Li?fﬁ%y)dH%yﬂ

Proof: Let P = {a = xy, x;, X5,.....x,, = b} be a partition of [a, b]. Let y, = ¢(x,),
so that x, = F (y,), as F is inverse function of ¢. Consider the partition Q
defined by Q = {yo = ¢ (a), iy = $(b)} of [a, bl. We put & (y) = f[F (y)].
Since ¢ is continuous on [a, b] it is uniformly continuous on [a, b]. Also by

definition |Q|— 0, if [P|— 0. Further
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) L b
limyy ;f (x.)(X, —X,_,) :L fdx

and limyg | D h(y)IFG,) ~F(y..) = |, har

d(b)
:L(a) f (F)dF. )
Now x,= F (y,) and h (y) = f [F(y) give
D F(x)(x, —x,)= F{Fy )I{F(y,) - F(y,_)}.
Making ||P||—> Oand so ||Q||—> 0, we get

Lb fdx = jyi"h(y)d[F(y)]jf(i)f[F(y)]d{F(y)],by ()
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