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                                                        LECTURE -1 

Now today we will study about functions of bounded variation and its 

properties.  

Definition- Functions of bounded variation consider a function f defined on [a, 

b]. let P = {a = x0, x1  - xn = b1 be any partition of [a, b]. The number 








n

1r

1rr

n

1r

)x(f)x(ffr)P,f(  is called the variation of f 

corresponding to P. 

Thus f has bounded variation on [a, b] if  or there exists  

]b,a[PPK,P,f(Vthatsuch,0K  ................. 

Where P [a, b] denotes the family of all partitions of [a,b]............. 

is)]h,a(,f[vthen]h,a[PP:)P,f(V{Sup)]h,a(,f[V   

writev    isb,af defined to be the total variation of f on [a, b]  

defined to be the total variation of f on (a, h) 

clearly if f has bounded variation  on [a, b]and a < c <b, then f is on bounded 

variation of [a,c] and [c,b]and          )1.....(..........b,c,fVc,a,fVb,a,fV   

Theorem 1: If f is of bounded variation on [a, b], then f is bounded on [a, b]  

Proof: f is of bounded variation on [a, b]  

.M])b,a[,f(v

k}p,f{vthatsuch0k




 

Also )b,axM]b,a[,fv)a(f)x(f   

Now M)a(f)x(fM)a(f)x(f   



4 

 

)b,a(onboundedis)x(f

)b,a(x)a(fM)x(f




 

Theorem 2:If the derivative f' (x) exists and is bounded in closed internal 

[a,b]then the function f is of bounded variation.  

Proof: Let p  = {a = x0 ...xn = b} he a partition of closed internal [a, b] 

Write   


 
n

1r

1rn )1(n.......2,1r)x(f)x(fP,v  

and      )2(]b,a[PP.P,fvsup]b,a[,fV   

Since f' (x) is bounded in [a, b] )3()b,a(xK)x('fthatsuch0K   

By Lagrange's mean value theorem  

)b,a(where)('f
)xx(

)x(f)x(f

1rr

1rr 





  

)('f)xx()x(f)x(f r1rr1rr    

)4()('f)xx()x(f)x(f r1rr1rr    

 For   xr-1<xr for r = 1, 2 -n. 

)xx(xx 1rr1rr    

Using (3) and (4) we get  

)5(K)xx()x(f)x(f 1rr1rr    

Using (5) in (1) we get  




 
n

1r

0n1rr )ab(k)xx(KK)xx()P,f(  

Takingsupremum of both sides and from (2) we get  

finiteis)]b,a[,f(v

)ab(k])b,a[,f(v




 

Consequently f is bounded.  
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Theorem:3If c [a, b] then show that f is bounded variation on [a, c] and [c, b] 

iff f is of bounded variation on [a, b]. 

Also prove that  

   V (f, [a,b] = V (f, [a,c] + V (f, [c,b] )  

Solution Let   P1 = {a = x0, x1, x2.....xn = c} 

and   P2 = {y0 = c,  y1, y2,......ym= b} 

wherexn  = y0 = c and P = P1P2,  

Then P = {a = x0, x1......., xn = c = y0, y1, y2......yn = b} 

Evidently P1, P2, P are respectively partitions of [a, c], [c,b] and [a, b] 

Step: 1. Suppose f is of bounded variation on [a,b].  

To prove that f is of bounded variation on [a, c]and [c, b] both.  

By assumption, V (f, [a, b] = finite = k, say.  

Evidently 





 
n

1r

1rr

n

1r

1rr k])b,a[,f(V)y(f)y(.f)x(f)x(.f   

Write S1 = 





 
m

1r

1rr

n

1r

21rr )y(f)y(.fS,)x(f)x(.f  

Then S1, S2> 0 and S1 +S2 k, S2  <S1+ S2 k 

or                                 S1 k,      S2 k 

Taking supremum over all partitions P1 and P2 

k]b,c[,f(V,k)]c,a[,f(V   

This  f is of bounded variation on [a, c] and [c,b] both.  

Step II. Let f be of bounded variation on [a, c] and [c, b] respectively. Then  

,finitek)]b,c[,f(V

,finitek)]c,a[,f(V

2

1




 

Aim f is of bounded variation on [a, b].  
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Let P = {a = z0, z1, z2......, zn = c, zn+1, .......,zm = b } be a partition of [a, b]  

Then  

 
 




 
n

1r

m

1nr

1rr1rr

n

1r

1rr )z(f)z(.f)z(f)z(.f)z(f)z(.f  

   V(f,[a, c]) + V (f,[c, b] = k1 +k2  = finite  




 
n

1r

211rr )1(finitekk)z(f)z(.for

 

This  f is of bounded variation on [a, b].  

Also, by (1)  

 
V(f,[a, b])  V (f,[a, c]) +V(f,[c, b])                                     (2) 

Step III: f is of bounded variation on [a, c].  

 given> 0  a partition P1 = {a = x0, x point xn = C} 

Such that 






n

1r

1rr )3(
2

])c,a[,f(V,)x(f)x(.f

 

Similarly f is of bounded variation on [c, b] 

gives )4(
2

])b,c[,f(V,)y(f)y(.f
n

1r

1rr






 

Adding (3)and (4), we get  







 
m

1r

1rr

n

1r

1rr )y(f)y(.f,)x(f)x(.f

 

   
>V (f,[a, c]) + V (f,[c, b]) - 

or V (f,[a, b]) >V (f,[a, c])+V (f,[c, b])   - 

Making > 0, we get  

V (f,[a, b]) V (f,[a, c])+V (f,[c, b])                                                        (5) 

(2) and (5)  V (f,[a, b]) = V (f,[a, c])+V (f,[c, b])  where a  c  b. 

 V (f, [a, b]) = k1 + k2 = finite  

 f is of bounded variation in [a,b]  



7 

 

LECTURE -2 

we will study about variation function and its properties and theorem based 

on it. 

Def. Variation Function, Let f be a function of bounded variation on [a, b] 

and x  [a, b]. The total variation of f on [a, c] is denoted by  V (f, [a, x) which 

is clearly a function of x.   

Write   vj (x) = v( f, [a, x]) 

Then vj (x) is defined as variation function or total variation function of f. 

Sometimes we also writevj (x) = v (x).  

 Let x1, x2,  [a, b] be arbitrary s.t. x1< x2.  

Since   V (f,[a, b]) = V (f,[a, c]) +V (f,[c, b])  

and so  V (f,[a, b]) - V (f,[a, c]) =V (f,[c, b])    

Hence    V (f,[a, x2]) - V (f,[a, x1]) =V (f,[ x1,X2])  (1) 

or  v (x2) - v (x1) =V (f,[ x1,X2])    (2) 

Since   0f(x2) - f (x1) V (f,[x1,X2])  

Using (2), we get  v(x2) - v (x1)   0 

or   v(x2) v (x1)  

Thus   x1<  x2 v (x1) v(x2)  

This  v(x) is monotonic non-decreasing function on [a, b]. 

Theorem 4: The variation function v(x) of a function of bounded variation is 

continuous iff f is a continuous function.  

Proof.Let f: [a,b]  R be a map. Let x, c  [a,b] be arbitrary but x < c.  

We have   v(x) = V (f, [a, x])    (1) 

  0 f(x) -f (c)  V (f,[x, c])   (2) 

and  V (f, [x, c] = V (f, [a, c] - V (f, [a, x])  (3) 

By (2) and (3), we get  

 0 f(x) -f (c)  V (f,[a, c])- V (f, [a, x]) 
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  = v(c) - v(x)  

or 0 f(x) - f (c) v(c) - v(x)    (4) 

x < c  v(x) < v (c) as v (x) is monotonic increasing function . 

(4)  0 f(x) - f (c) v(c) - v(x)   (4') 

Let f be a function of bounded variation so that  

 v(c), v (x) finite number     (5) 

Step 1. Let v(x) be continuous on [a, b]   (6) 

Aim: f(x) is continuous on [a, b].  

For this we show that f(x) is continuous at x = c.  

By (6) given > 0, > 0 s.t. 

 )7()c(v)x(vcx    

Using (4) in (7) we get  

  cxfor)c(f)x(f  

f(x) is continues at  x = c.  

Step II. Let f (x) be continuous on [a, b]  

Aim.v(x) is continuous on [a, b] .  

By assumption, given > 0, > 0 s.t. 

 )8(
2

)c(f)x(fcx


  

f is bounded variation  

]b,c[of}bx.........,x,xc[ppartition n10   

)9(
2

])b,c[,f(V,)x(f)x(.f.t.s
n

1r

1rr







 

Further suppose that length of first sub-interval x1 - c is less than . By doing 

this change, (9) will remain uneffected.  

  0 <x1 - c = x1 - c < 
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2

)c(f)x(f)8(byand 1


                                           (10) 

and by (8) and (9) 

2
])b,c[,f(V,)x(f)x(.f.)c(f)x(f

n

2r

1rr1


 




 

).10(by,
22

2
)c(f)x(f,)x(f)x(.f])b,c[,f(Vor 1

n

2r

1rr















 

or V (f, [c,b]) - V (f, [x1, b]) < 

or  V(f, [c, x1]) <        (11) 

But V(f, [a, b] = V (f, [a, c]) + V (f, [c, b]) 

 V(f, [a, b] - V (f, [a, c]) = V (f, [c, b]) 

or V(f, [a, x1] - V (f, [a, c]) = V (f, [c, x1]) <, by  (11) 

or V(f, [a, x1] - V (f, [a, c]) < 

or v(x1)- v(c)< 

or v  (x1)-v(c)< v(x) is an increasing function.  

for x1-c< 

This  v(x) is continuous at x = c.  

Theorem 5: A monotonic function is a  function of bounded variation.  

or 

 Let be monotonic function and bounded on [a, b]. Then f is bounded variation 

on [a, b] and  v(f)  = f(b)- f(a) 

Proof: let f : [a, b]  R be a monotonic function.  

Let P = {a = x0,, x1, x2,......, xn = b} be a partition of [a, b]  

Then  )1()x(f)x(f)P,f(v
n

1r

1rr


  

Case 1: When f is monotonic increasing function  
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 x1< x2 f (x1) < f(x2) f(x2)-f (x1) > 0 

  f(x2)-f(x1)= f(x2)- f (x1) 

Now (1) becomes  

 



n

1r

1rr )x(f)x(f)P,f(v  

 = [f (x1) - f(x0)] + [f(x2)-f(x1)] +.....+ [f(xn) - f(xn-1)]  

 = f(xn)- f(x0)= f (b) -f(a) 

or v(f, P) = f(b) -f(a) 

as  a < b  f (a) < f (b).     (2) 

Case II: When f is monotonic decreasing. 

x1< x2 f (x1) > f (x2)  f (x1) - f (x2) > 0 

Now (1) becomes  

 


 
n

1r

r1r )x(f)x(f[)P,f(v  

= [f (x0) - f(x1)] + [f(x1)-f(x2)] +.....+ [f(xn+1) - f(xn)]  

  = f(x0)- f(xn)= f (a) -f(b) 

as  a<bf(a)> f(b)  f(a)-f(b) > 0 

  v(f, P) = f(a) -f (b)     (3) 

By (2) and (3),, we have, in either case,  

 v(f, P) = f(b) -f (a) = finite  

This  f is of bounded variation  
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LECTURE -3 

We will study some algebraic properties of bounded variation 

Theorem 6: If f and g are functions of bounded variation on [a, b], then their 

sum f + g, product f g and difference f-g are functions of bounded variation on 

[a, b]  

Proof: Let p = {a = x0, x1, x2, .......xn = b } be a partition of [a, b].  





n

1r

1rr )x(f)x(f)P,f(v  





n

1r

1rr )x(g)x(g)P,g(v  

f and g are of bounded variation on [a, b] 

   k1, k2> 0 s.t. v (f, P) < k1, v (g, P) < k2,  

Also they must be bounded on [a, b] and so  m1, m2> 0s.t.  

]b,a[xm)x(g,m)x(f 21   

Step1: To prove that f + g is of bounded variation  

 



n

1r

1rr )x)(gf()x()gf()P,gf(v  

    =    )x()x(g{)}x(f)x(f{ 1rr1rr  

      )x(g)x(g)}x(f)x(f 1rr1rr
 

    = 
21 kk)P,g(v)P,f(v   

or,  v (f + g, P) < k1 + k2 

This  f + g is of bounded variation.  

Note. Here we have V (f+g. I)  V (f, I) + V (g,I)where I = [a, b].  

Step II: To prove that fg is of bounded variation on [a, b].  





n

1r

1rr )x)(fg()x()fg()P,fg(v  

    =   )x(g)x(f)}x(g)x(f{ 1r1rrr  
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    =    )}x(f)x(f){x(g)}x(g)x(g)x(g{)x(f 1rr1r1r1rrr  

      )x()x(fx(g)x(g)x(g)x(f 1rr1r1rrr
 

   





 
n

1r

1rr2

n

1r

1rr1 x(f)x(fmx(g)x(gm  

    )P,f(vmP,gvm 21   

1221 kmkm   

or finitekmkm)P,fg(v 1221   

This fg is of bounded variation  

Step III: To prove that f - g is of bounded variation.  





n

1r

1rr )x)(gf()x()gf()P,gf(v  

    =    )}x(g)x(f{)}x(g)x(f{ 1r1rrr  

    =    )}x(g)x(g{)}x(f)x(f{ 1rr1rr  

     )x(g)x(g)1x(f)x(f 1rrrr
 

     = 
21 kk)P,g(v)P,f(v   

or finitekk)P,gf(v 21   

This  f-g is of bounded variation  

Note: Here we have the following results.  

     

     

     I,fmI,gVmI,fgV

I,gVI,fVI,gfV

I,gVI,fVI,gfV

V21 





 

Where I = [a, b],f(x) m1, g(x)< m2 

Theorem 7: If a function f is of bounded variation of [a, b] and if k> 0 s.t. 

.iationvarboundedofalsois
f

1
then,]b,a[xk)x(f   
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Proof, Let  P = {a = x0, x1, x2......, xn = b} be a partition of [a, b]. Then 

   









 












)x(f)x(f

)x(f)x(f

xf

1

xf

1
P,

f

1
v

1rr

r1r

n

1r 1rr

 

 

 
 

)P,f(v
k

1
)x(f)x(f

k

1

)x(f.xf

)x(fxf

21rr2

1rr

1e
















 

as 
k

1

)x(f

1
k)x(f   

or )P,f(v
k

1
P,

f

1
v

2









                                                        (1) 

Further f is of bounded variation.  

.0kwhere,k)P,f(v 11   

numberfinite
k

k
P,

f

1
v)2(By

2

1 





  

f

1
 is of bounded variation.  

Theorem 8: (Jordan Theorem): A function of bounded variation is 

expressible as a difference of two monotone increasing functions.  

Proof: Let P = {a = x0, x1, x2, ......,xn = b} be a partition of [a, b]. Then  

   



n

1r

1rr )x(f)x(fP,fv  

  ]b,a[PP:)P,f(v{sup]b,a[,fv   

Let x [a, b] be arbitrary. Then  

v(x) = V (f, [a, x]) is called variation function. We define  
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)2()]x(f)x(v[
2

1
)x(q

)1()]x(f)x(v[
2

1
)x(P





 

v(x) is a monotonic increasing function.  

Evidently x1< x2<x3 .................. 

I.  )]x(f)x(v[
2

1
)]x(f)x(v[

2

1
)x(P)x(P 112212   

or  )]x(f)x(f[
2

1
)]x(v)x(v[

2

1
)x(P)x(P 122212   

But  ])x,a[,f(v[])x,a[,f(v)x(v)x(v 1212   

   = )x(f)x(f])x,x[,f(v 1221   

0)}x(f)x(f{
2

1
)]x(v)x(v[

2

1
)x(P)x(P 121212   

or,   )x(P)x(Por0)x(P)x(P 1212   

Thus  )x(P)x(Pxx 2121   

This proves that P (x) is an increasing function.  

II.  )]x(f)x(v[
2

1
)]x(f)x(v[

2

1
)x(q)x(q 112212   

  )]x(f)x(f[
2

1
)]x(v)x(v[

2

1
1212   

  )]x(f)x(f[
2

1
])x,x[f(v

2

1
1221   

  0)}x(f)x(f{
2

1
)x(f)x(f

2

1
1212   

or q(x2)- q(x1)  0 

or  q(x2) q(x1) 

or x1<  x2 q(x1) q(x2) 

This  q (x) is monotonic increasing function.  

(1) - (2) gives    P (x) - q (x) = f (x) 



15 

 

or      f(x) = P (x) - q (x)  

This  f(x) is expressible as a difference of two monotonic increasing 

functions.  

Theorem 9: If is of bounded variation on [a, b], then V =P + N and P-N= f(b)- 

f(a), where V, P,N respectively denote total, positive and negative variations of 

on [a, b]. 

Or 

  ).a(f)b(fNPandNPT b

a

b

a

b

a

b

a

b

a   

Proof. Let  .)x(f)x(fV
1n

1r

r1r



   

Here the closed interval [a, b] is divided by means of points   

  a = x0< x1< x2< ....<xn = b. 

Let p be the sum of those differences f(xr+1)- f (xr) which are positive. - n that 

the sum of those differences which are negative. Evidently 

.np)a(f)b(f,nP   

From which we get  

.p2)a(f)b(f   

and  .n2)a(f)b(f   

i.e.  )b(f)a(fp2                                 (1) 

and  )a(f)b(fn2                                 (2) 

Set P = sup p, N =sup n, V = sup 

where we take the suprema over all possible sub-division of [a, b]. Taking 

suprema in (1) and (2). 

 

   )b(f)a(fp2V       (3) 

   )a(f)b(fN2V       (4) 

upon addition,  N2P2V2    
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or   NPV        (5) 

(3) - (4) gives  

   )b(f)a(f[)NP(20    

or   NP)a(f)b(f       (6) 

(5) and (6)  required results.  

Theorem 10: To prove that a function f is of bounded variation if and only if it 

is expressible as a difference of two monotonic functions both non-increasing 

or both non-decreasing.  

 Proof: Let a function f be defined and finite on a closed interval [a, b] so 

that f (a) and f(b) are finite numbers. We shall show that  

 (i) if f is of bounded variation then it is represent able as a difference 

of two monotonic increasing functions.  

 (ii)  If f = g-h, where g and h both are monotonic increasing functions, 

then f is of bounded variation.  

 (i) Let f be of bounded variation. Divide the interval [a, b] by means 

of points  

   a = x0<  x1< x2< ...... <xn  = b. 

Let    



 

1n

0r

r1r Vsup,)x(fx(f  

Let P be the sum of those differences f (xr+1-f (xr) which are positive, - n that 

the sum of those differences which are negative  

Evidently  np)a(f)b(f,np   

Solving for p and n, we get  

  

n2)a(f)b(f

p2)a(f)b(f




 








)a(f)b(fn2and

)b(f)a(fp2
   (1) 
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Set P = sup p, N =sup n, V = sup  

where the suprema is taken over all possible subdivisions of [a, b].  

 Taking suprema in (1), we obtain 

   )b(f)a(fP2V      (2) 

   )a(f)b(fN2V      (3) 

 Further we suppose that V (x), P (x), N (x) respectively denote total 

variation, positive and negative variations of f in the interval [a, x], where x  

b. With the help of (2) and (3),  

 

)x(f)a(f)x(P2V     (4) 

   )a(f)x(f)x(N2V     (5) 

(4)- (5) gives  

   )]x(f)a(f[2)]x(N)x(P[20   

or  )a(f)x(N)x(P)x(f    

Taking f (a) + P (x) = P' (x) , we get  

  )x(N)x('P)x(f       (6) 

It is easy to verify that P (x) and N (x) both are monotonic increasing functions. 

P (x) is an increasing function implies that p (x) is also increasing function.  

Now the required result at once follows from (6).  

(ii)   Let f=g-h, where g and h both are increasing functions, For any mode of 

sub-division of [a, b],  





 

1n

0r

r1r )x(f)x(f)f(V  

where a = x0< x1< x2< .... <xn = b 

 )]x(g)x(g[)]x(h)x(g[)x(f)x(f rr1r1rr1r    

      = )]x(h)x(h[)]x(g)x(g[ r1rr1r    
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      = )]x(h)x(h)x(g)x(g r1rr1r     

    )]x(h)x(h)x(g)x(g r1rr1r    

   = .)]x(h)x(h)x(g)x(g r1rr1r     

For g and h both are monotonic increasing functions.  















 

1n

0r

r1r

1n

0r

r1r

1n

0r

r1r )]x(h)x(h[)]x(f)x(f[)x(f)x(f  

    =  )a(h)b(h)a(g)b(g    

    =    a finite number.  

[ Forf is finite valued g and h both are finite valued ]. 

  <V(f)   a finite number  

This f  is of bounded variation.  
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                                        LECTURE -4 

 

We will study some problems related to absolute continuous function 

Theorem11:Every absolutely continuous function is of bounded variation. 

Proof.Let f be an absolutely continuous function on a closed interval [a, b] so 

that we can select a >s.t. 

    



n

1k

kk

n

1k

k)k abwhenever1)a(fb(f  

for all numbers a1, b1, a2, b2,......, an, bn 

where a = a1<b1 a2<b2.......an<bn= b. 

Again divide the closed interval [a, b] by means of points 

bc......ccca
0n210   

in n0 parts s.t. ck+1 - ck<. 

Consequently for any subdivision of [ck, ck+1] 

  1kk11 ccx,xwhere1)x(f)x(f 


   

i.e. .1)f(V 1k

k

c

c   

It follows that  

 )f(V......)f(V)f(V)f(V 0n

10

2

10

c

c

c

c

c

c

b

a 

   

 1  +  1  +  1 +......= n0 

i.e. )f(Vb

a  

Consequently f is of bounded variation.  

Theorem 12: If f (x) and g (x) are absolutely continuous functions, then their 

sum, difference and product are also absolutely continuous functions. Further if 

g (x) does not vonish for any x, then the quotient 
)x(g

)x(f
is also absolutely 

continuous.  
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Proof. Let f (x) and g(x) be absolutely continuous functions over the closed 

interval [a, b] so that  

Given    .t.s0,0   

  



n

1k

kk

n

1k

kk )a(g)b(gand)a(g)b(f  

whenever 



n

1k

k )ab(  

.t.s,b,a,......,b,a,b,a nn2211  

   
nn2211 ba......baba   

Step (i): To prove that f(x)g(x) is absolutely continuous over [a, b].  

 





n

1k

kkkk )]a(g)a(f[)b(g)b(f  





n

1k

kk

n

1k

kk )a(g)b(g)a(f)b(f  

  < +  

Finally  

 



n

1k

kkkk 2)]a(g)a(f[)b(g)b(f  

From this the required result follows.  

Step (ii): to prove that f(x) g(x) is absolutely continuous over [a, b] 

 



n

1k

kkkk )a(g)a(f)b(g)b(f  

 =  



n

1k

kkkkkk )]a(f)b(f[)a(g)]a(g)b(g[)b(f  

 



n

1k

kkk

n

1k

kkk )a(f)b(f)a(g)a(g)b(g.)b(f   
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or 



n

1k

kkkk )a(g)a(f)b(g)b(f  

   



n

1k

kkk

n

1k

kkk )1.........()a(f)b(f)a(g)a(g)b(g.)b(f  

We know that  

Absolutes continuity continuity 

   boundednes 

   f(x) and g(x) are bounded in [a, b] 

   f (x)  M1, g (x)  M2, x  [a, b]. 

M1 and M2 are upper bounds of f(x) and g(x) respectively in [a, b].  

In this event (1) takes the form  

 

 



n

1k

21kkkk .MM)a(g)]a(f)b(g[)b(f  

Setting   '

,21 MM   we get  

 



n

1k

kkkk ..)a(g)]a(f)b(g[)b(f  

From this the required result follows.  

Step (iii): Let g (x) vanish no where in [a, b] so that >0 s. t.g (x) x 

[a, b]. 

To prove that 
)x(g

)x(f
is absolutely continuous over [a, b].  

2

n

1k kk

kk
n

1k kk )a(gb(g

)a(g)b(g

)a(g

1

)b(g

1







 


 

Setting '
2





 we get  

,'
)a(g

1

)b(g

1n

1k kk



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This proves that 
)x(g

1
is absolutely continuous over [a, b]. 

By step (ii), f (x)
)x(g

1
=

)x(g

)x(f
is absolutely continuous over [a, b]. This 

concludes the problem.  

Theorem 13: (Integration by parts).Let f and g be functions of bounded 

variation  on [a, b] and let f be continuous on [a, b]. Then  

 
b

a

b

a

b

a gdf)]x(g)x(f[fdg  

= 
b

a
gdf)a(g)a(f)b(g)b(f  

Proof. Let P= {a =x0, x1,.......,xn =b} be a partition of [a, b] and Q = {a=0, 1, 

2,......,n = b} be an intermediate partition of P.   

so that xr-1rxr, for r = 1, 2......, n. 

From the sum S (f,g,P) =



n

1r

rr g)(f                                 (1) 

Evidently when thennas,0)xx(maxmaxP 1rrr    

  
b

a
gdfP,g,fS  

By (1)          



n

1r

1rrr xgxgfP,g,fS   

 =                     1nnn122011 xgxgf.....xgxgfxgxgf   

 [adding and subtracting f(0) g(x0) and re-arranging the terms] 

                  

           nn1nn1n

12101000

xgfffxg

....ffxgffxgxg







 

=                


 
n

1r

1rr1r00nn ffxgxgfxgf  

=            


 
n

1r

1rr1r

b

a
ffxgxgxf  



23 

 

=       Q,P,g,fSxgxf
b

a
  

Making P  0 and  so also Q 0, we get  

   
b

a

b

a

b

a
fdg)x(g)x(ffdg  

Theorem 14: Second Mean Value Theorem, Let f be monotonic and g be real 

valued continuous and of bounded variation on [a, b]. Then [a, b] such that  

            .gbgbfaggaffdg
b

a
  

Proof: By Theorem integration by parts., 

         
b

a

b

a
gdfagafbgbffdg    (1) 

By the first mean value theorem  [a, b] such that  

       ,afbfggdf
b

a
  

Using this in (1), we get  

               afbfgagafbgbfgdf
b

a
  

  =              .gbgbfaggaf   

13.7 Change of Variable: 

Theorem15: Let f and be continuous on [a, b] and let  be increasing on     [a, 

b]. If F is inverse function of , then  

   .)y(F[d.)y(Ff.dx)x(f
b

a

)b(

)a( 



  

Proof: Let P = {a = x0, x1, x2,.....xn = b} be a partition of [a, b]. Let yr = (xr), 

so that xr = F (yr), as F is inverse function of . Consider the partition Q 

defined by Q = {y0 =  (a), y1,......yn =  (b)} of [a, b]. We put h (y) = f [F (y)]. 

Since  is continuous on [a, b] it is uniformly continuous on [a, b]. Also by 

definition Q  0, if P  0. Further  
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 





n

1r

b

a
1rrr

0
P

fdx)xx)(x(flim  

and  





n

1r

y

y
1rrr

0
Q

n

0

hdF)y(F)y(F[)y(hlim  







)b(

)a(
)1(.dF)F(f  

Now xr= F (yr) and h (y) = f [F(y) give  

 
 

 
n

1r

n

1r

1rrr1rrr )}.y(F)y(F{)]y(F{f)xx()x(f  

Making 0P  and so  0Q  , we get  

   





b

a

y

y

)b(

)a(

n

0

)1(by)],y(F{d)]y(F[f)]y(F[d)y(hfdx  


