Year: $\mathbf{2}^{\text {nd }}$ Year (2K21)

End Semester Examination

Maximum marks: 50

All questions are compulsory

Section A

1. A rigid triangular body $P Q R$, with sides of equal length of 1 unit moves on a flat plane. At the instant shown, edge $Q R$ is parallel to the x -axis, and the body moves such that velocities of points P and R are V_{p} and V_{R}, in the x and y directions, respectively. The magnitude of the angular velocity of the body is

[2]
2 A rigid link PQ is 2 m long and oriented at 200 to the horizontal as shown in the figure. The magnitude and direction of velocity VQ, and the direction of velocity VP are given. The magnitude of VP (in m / s) at this instant is

[2]
2. A rigid rod of length 1 m is resting at an angle $\theta=45^{\circ}$ as shown in figure. The end P is dragged with a velocity of $v_{P}=5 \mathrm{~m} / \mathrm{s}$ to the right. At the instant shown, the magnitude of the velocity V_{Q} (in m / s) of point Q as it moves along the wall without losing contact is

plane, the velocity of point A on the rod is $1 \mathrm{~m} / \mathrm{s}$. The angular velocity of the rod at this instant is $1 \mathrm{~m} / \mathrm{s}$.

3. A four bar mechanism is shown in the figure. The link numbers are mentioned near the links. Input link 2 is rotating anticlockwise with a constant angular speed $\omega 2$. Length of different links are : $\mathrm{O}_{2} \mathrm{O}_{4}=$ $\mathrm{O}_{2} \mathrm{~A}=\mathrm{L}, \quad \mathrm{AB}=\mathrm{O}_{4} \mathrm{~B}=\sqrt{2} \mathrm{~L}$ The magnitude of the angular speed of the output link 4 is $\omega 4$ at the instant when link 2 makes an angle of 900 with O 2 O 4 as shown. The ratio $\frac{\omega_{4}}{\omega_{2}}$ is \qquad —.

Section B

1. For the configuration of a slider-crank mechanism, calculate the
(a) Velocity of slider B
(b) angular velocity of link AB

OA rotates at $20 \mathrm{rad} / \mathrm{s}$ counter-clockwise.

4. A rod of length 1 m is sliding in a corner as shown in figure. At an instant when the rod makes an angle of 60° with the horizontal
2. A simple quick return mechanism is shown in the figure. The forward to return ratio of the quick return mechanism is $2: 1$. If the radius of the crank $\mathrm{O}_{1} \mathrm{P}$ is 125 mm , then the distance' d^{\prime} (in mm) between the crank centre to lever pivot centre point should be

3. Derive the expression of coriolis acceraltion.
4. Define the following terms
(a) module
(b) circular pitch
(c) path of contact
(d) contact ratio
5. Locate instantaneous centre of rotation of given mechanism (a)

(b)

(a)
(c)

(d)

$\underline{\text { Section C }}$

1. For the configuration of a slider-crank mechanism, calculate the
(a) Acceleration of the slider at B
(b) Angular acceleration of the link AB OA rotates at $20 \mathrm{rad} / \mathrm{s}$ counter-clockwise.

2. PQRS is a four bar chain with link PS fixed. The lengths of the links are $\mathrm{PQ}=62.5 \mathrm{~mm} ; \mathrm{QR}=175 \mathrm{~mm} ; \mathrm{RS}=112.5 \mathrm{~mm}$ and PS $=200 \mathrm{~mm}$. The crank PQ rotates at $10 \mathrm{rad} / \mathrm{s}$ clockwise. when angle QPS $=60^{\circ}$ and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of links $Q R$ and RS.

[10]
