DEPARTMENT OF MECHANICAL ENGINEERING

UNIVERSITY INSTITUTE OF ENGINEERINGAND TECHNOLOGY, CSJM UNIVERSITY, KANPUR
Advanced Solid of Mechanics (MEE-S206)

Semester: 2023-24 (Even Semester) Year (Backlog) Semester: 4th (Year – 2nd)

Mid-1 Semester Examination

Time: 1.5 h Maximum marks: 30

Section-A

1. A simply supported beam subjected to point load at mid point of beam.

- (a) Find the slope at mid-point.
- (b) Find the deflection at mid-point.
- (c) Draw shear force diagram.
- (d) Draw bending moment diagram.

$$[2.5 + 2.5 + 2.5 + 2.5]$$

Section-B

2. Find the equation of the elastic curve for the cantilever beam as shown in fig below. It carries a load that varies from zero at the wall to w_0 at the free end. Take the origin at the wall.

3. Compute the value of EI δ at midspan for the beam loaded as shown in figure below. If E =10 GPa, what value of I is required to limit the midspan deflection to 1/360 of the span?

[4+4]

Section-C

4. For the beam loaded as shown in figure below, determine (a) the deflection and slope under the load P and (b) the maximum deflection between the supports.

5. Determine the value of Ely midway between the supports for the beam loaded as shown in figure below.

