

CELL AND TISSUE CULTURE IN PLANTS

MICROPROPAGATION

Dr Sugandha Tiwari

Associate Professor Dept. of Botany

D.G.P.G. College, Kanpur

Email: sugandhatiwari7@gmail.com

PLANT CELL AND TISSUE CULTURE

Plant tissue culture is a technique of growing plant cells, tissues or organs on a nutrient culture medium under sterile (aseptic) and controlled environmental conditions.

MICROPROPAGATION

- Multiplication of genetically identical copies of a plant by asexual reproduction is called clonal propagation.
- Clonal propagation through tissue culture is called micropropagation.

Micro propagation mostly involves in vitro clonal propagation by two approaches:

1. Multiplication by axillary buds-

2. Meristem and Shoot Tip Cultures:

Micropropagation of Artemisia annua from nodal explants containing axillary buds (Dr. Sugandha Tiwari)

General Micropropagation Technique

Murashige (1974) identified major stages in the in vitro propagation process.

Micropropagation comprises of five steps, each with its specific requirements and problems :

Stage 0: It is the preparatory stage to provide quality explants;

Stage 1: Initiation of aseptic cultures;

Stage 2: Multiplication;

Stage 3: Rooting of in vitro formed shoots; and

Stage 4: Transfer of plants to greenhouse or field conditions (transplantation).

Factors Affecting Micro propagation:

1. Genotype of the plant:

Plants with vigorous germination and branching capacity are more suitable for micropropagation.

2. Physiological status of the explants:

Explants (plant materials) from young parts of plants are more effective than those from older regions.

3. Culture media:

Addition of growth regulators (auxins and cytokinins) and alterations in mineral composition are required for different plant species and type of explant.

4. Culture environment:

Light:

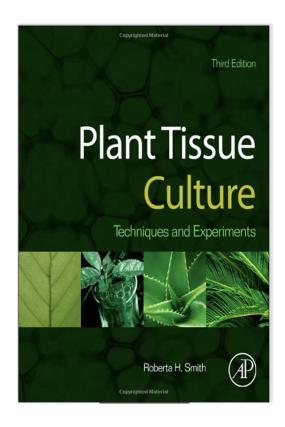
An illumination of 16 hours day and 8 hours night is satisfactory for shoot proliferation.

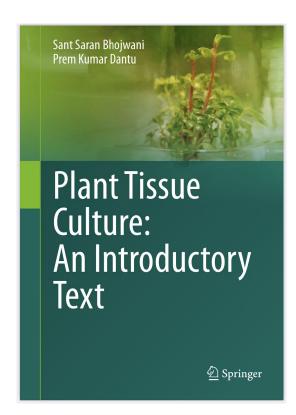
Temperature:

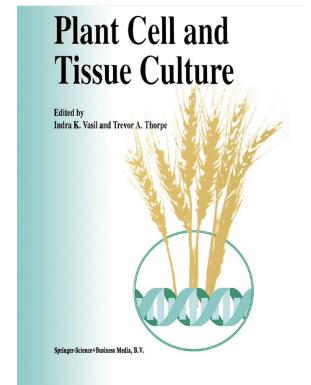
Majority of the culture for micropropagation requires an optimal temperature around 25°C.

Applications of Micropropagation

- The major benefit is clonal propagation, resulting in genetically identical copies of a cultivar.
- 2. Germplasm conservation of threatened or endangered plants.
- 3. More rapid propagation,
- Meristem tip cultures to develop pathogen-free plants.
- Enhanced axillary branching of in vitro-derived plants (resulting in fuller foliage),
- 6. Production of a uniform crop,
- 7. Year-round production,
- 8. Hastening of a new crop introduction, and




Applications of Micro propagation:


- 9. Cloning of only the desirable female plants (date palm) or male plants (asparagus).
- 10. Minimum growing space (millions of plant species can be maintained inside culture vials in a small room in a nursery).
- 11. The small sized propagules obtained in micro propagation can be easily stored for many years (germplasm storage), and transported across international boundaries.
- 12. Automated micro propagation using bioreactors for large scale multiplication of shoots and bulbs

References

Thank you all

Any questions??

sugandhatiwari7@gmail.com