
The Dispersion Model

Chapter 13



Choice of Models
Models are useful for representing flow in real vessels, for scale up, and 
for diagnosing poor flow. 
We have different kinds of models depending on whether flow is close to 
plug, mixed, or somewhere in between.
Chapters  deal primarily with small deviations from plug flow. 
There are two models for this: the dispersion model and the tanks-in-
series model. 
They are roughly equivalent. These models apply to turbulent flow in 
pipes, laminar flow in very long tubes, flow in packed beds, shaft kilns, 
long channels, screw conveyers, etc.
For laminar flow in short tubes or laminar flow of viscous materials these 
models may not apply, and it may be that the parabolic velocity profile is 
the main cause of deviation from plug flow.
 We treat this situation, called the pure convection model, in Chapter 15.
If you are unsure which model to use go to the chart at the beginning of
Chapter 15. 
It will tell you which model should be used to represent your setup.



AXIAL DISPERSION
Suppose an ideal pulse of tracer is introduced into the fluid 
entering a vessel.
The pulse spreads as it passes through the vessel, and to 
characterize the spreading according to this model (see Fig.), 
we assume a diffusion-like process superimposed on plug 
flow. 
We call this dispersion or longitudinal dispersion to distinguish 
it from molecular diffusion. 
The dispersion coefficient D (m2/s) represents this spreading 
process.  Thus
• Large D means rapid spreading of the tracer curve
• small D means slow spreading
• D = 0 means no spreading, hence plug flow





The variance represents the square of the spread of the distribution as it 

passes the vessel exit and has units of (time)2. 

It is particularly useful for matching experimental curves to one of a family 

of theoretical curves



• Consider plug flow of a fluid, on top of which is superimposed some 
degree of backmixing, the magnitude of which is independent of position 
within the vessel. 

• This condition implies that there exist no stagnant pockets and no gross
      bypassing or short-circuiting of fluid in the vessel. 
• This is called the dispersed plug flow model, or simply the dispersion 

model. 



• For molecular diffusion in the  x-direction the governing differential 
equation is given by Fick's law:

where D, the coefficient of molecular diffusion, is a parameter which 
uniquely characterizes the process. 
In an analogous manner we may consider all the contributions to 
intermixing of fluid flowing in the x-direction to be described

Representation of the dispersion (dispersed plug flow) model.



where the parameter D, which we call the longitudinal or axial dispersion 
coeficient, uniquely characterizes the degree of backmixing during flow. 
• We use the terms longitudinal and axial because we wish to distinguish 

mixing in the direction of flow from mixing in the lateral or radial direction, 
which is not our primary concern. 

• These two quantities may be quite different in magnitude. 
• For example, in streamline flow of fluids through pipes, axial mixing is 

mainly due to fluid velocity gradients, whereas radial mixing is due to 
molecular diffusion alone. 



This model usually represents quite satisfactorily flow that deviates not 
too greatly from plug flow, thus real packed beds and tubes (long ones 
if flow is streamline).

Fitting the Dispersion Model for Small Extents of 
Dispersion, D/uL < 0.01

• If we impose an idealized pulse onto the flowing fluid then dispersion 
modifies this pulse. 

• For small extents of dispersion (if D/uL is small) the spreading tracer 
curve does not significantly change in shape as it passes the measuring 
point (during the time it is being measured).

•  Under these conditions the solution to Eq is not difficult and gives the 
symmetrical curve.



The equations representing this family are





• Note that D/uL is the one parameter of this curve. Figure shows a 
number of ways to evaluate this parameter from an experimental 
curve: by calculating its variance, by measuring its maximum height 
or its width at the point of inflection, or by finding that width which 
includes 68% of the area.

• Also note how the tracer spreads as it moves down the vessel. From 
the variance expression of Eq. 8 we find that

additivity of means and of variances of the E curves of vessels a,b,. . . ,n.

Fortunately, for small extents of dispersion numerous simplifications and 
approximations in the analysis of tracer curves are possible. 
First, the shape of the tracer curve is insensitive to the boundary condition 
imposed on the vessel, whether closed or open .So for both closed and open 
vessels



• The additivity of times is expected, but the additivity of variance is not 
generally expected. 

• This is a useful property since it allows us to subtract for the distortion
      of the measured curve caused by input lines, long measuring leads, etc.
• This additivity property of variances also allows us to treat any one-shot 

tracer input, no matter what its shape, and to extract from it the variance of 
the E curve of the vessel.



• Thus no matter what the shape of the input curve, the D/uL value for the 
vessel can be found. 

• The goodness of fit for this simple treatment can only be evaluated by 
comparison with the more exact but much more complex solutions.

 
• From such a comparison we find that the maximum error in estimate of 

D/uL is given by



Large Deviation from Plug Flow,
D/UL > 0.01

• Here the pulse response is broad and it passes the measurement 
point slowly enough that it changes shape-it spreads-as it is being 
measured. 

• This gives a non symmetrical E curve.
• An additional complication enters the picture for large D/uL: 

What happens right at the entrance and exit of the vessel strongly 
affects the shape of the tracer curve as well as the relationship 
between the parameters of the curve and D/uL.

• Let us consider two types of boundary conditions: either the flow is 
undisturbed  as it passes the entrance and exit boundaries (we call 
this the open b.c.), 

• or you have plug flow outside the vessel up to the boundaries (we 
call this the closed b.c.). 

• This leads to four combinations of boundary conditions, closed-
closed, open-open, and mixed.



• Figure illustrates the closed and open extremes, whose RTD curves are 
designated as Ecc and Ebc.

• Now only one boundary condition gives a tracer curve which is identical 
to the E function and which fits all the mathematics of Chapter 11, and 
that is the closed vessel. 

• For all other boundary conditions you do not get a proper RTD.
• In all cases you can evaluate D/uL from the parameters of the tracer 

curves; however, each curve has its own mathematics. 
• Let us look at the tracer curves for closed and for the open boundary 

conditions.



Tracer response curves for closed vessels and large deviations from plug 
flow.
Closed Vessel. Here an analytic expression for the E curve is not available.
However, we can construct the curve by numerical methods, see Fig., or
evaluate its mean and variance exactly, as was first done by van der Laan
(1958). Thus



Open Vessel. This represents a convenient and commonly used experimental 
device, a section of long pipe (see Fig. 13.9). 

• It also happens to be the only physical situation (besides small D/uL) 
where the analytical expression for the E curve is not too complex. 

• The results are given by the response curves shown in fig.
• the following equations, first derived by Levenspiel and Smith





Comments





Step Input of Tracer
• Here the output F curve is S-shaped and is obtained by integrating 

the corresponding E curve. Thus at any time t or θ

The shape of the F curve depends on D/uL and the boundary 
conditions for the vessel. 
Analytical expressions are not available for any of the F curves



Small Deviation from Plug Flow, D/uL < 0.01 
• From Eqs. we can find the curves of Fig.
• For these small deviations from plug flow we can find D/uL directly by 

plotting the experimental data on probability graph paper as indicated 
in Fig. . 

Probability plot of a step response signal. From this we find D/uL directly.



Step Response for Large Dispersion, D/uL > 0.01.
• For large deviations from plug flow, the problem of boundary 

conditions must be considered, the resulting S-shaped response 
curves are not symmetrical, their equations are not available, and 
they are best analyzed by first differentiating them to give the 
corresponding Cpulse curve. Figure  shows an example of this 
family of curves.

• Step response curves for large deviations from plug flow in closed 
vessels.



(a) One direct commercial application of the step experiment is to find the
zone of intermixing-the contaminated width-between two fluids of
somewhat similar properties flowing one after the other in a long 
pipeline.
Given D/uL we find this from the probability plot of Fig. Design
charts to ease the calculation are given by Levenspiel (1958a).

(b) Should you use a pulse or step injection experiment?  
Sometimes one type of experiment is naturally more convenient for 
one of many reasons.  In such a situation this question does not arise

But when you do have a choice, then the pulse experiment is 
preferred because it gives a more "honest" result. 

The reason is that the F curve integrates effects; it gives a smooth good-
looking curve which could well hide real effects. 



• For example, Fig. shows the corresponding E and F curves for a given 
vessel.

On the assumption that the closed vessel of Example 11.1, Chapter 11, is 
well represented by the dispersion model, calculate the vessel dispersion 
number D/uL. The C versus t tracer response of this vessel is

Sensitivity of the E and F curves for the same flow.

D/uL FROM AN F CURVE





Ignoring the second term on the right, we have as a first approximation



• von Rosenberg (1956) studied the displacement of benzene by n-
butyrate in a 38 mm diameter packed column 1219 mm long, 
measuring the fraction of n-butyrate in the exit stream by refractive 
index methods. 

• When graphed, the fraction of n-butyrate versus time was found to 
be S-shaped. This is the F curve, and it is shown in Fig. for von 
Rosenberg's run at the lowest flow rate,where u = 0.0067 mm/s, 
which is about 0.5 m/day. Find the vessel dispersion number of this 
system. 



• Instead of taking slopes of the F curve to give the E curve and then 
determining the spread of this curve, let us use the probability paper 
method. So, plotting the data on this paper does actually give close 
to a straight line, as shown in



• To find the variance and D/uL from a probability graph is a simple 
matter.

• Just follow the procedure illustrated in Fig.. Thus Fig.  shows that 
the 16th percentile point falls at t = 178 550 s 
the 84th percentile point falls at t = 187 750 s

and this time interval represents 2u. 
Therefore the standard deviation is



D/uL FROM A ONE-SHOT INPUT
• Find the vessel dispersion number in a fixed-bed reactor packed 

with 0.625-cm catalyst pellets. 
• For this purpose tracer experiments are run in equipment shown in 

Fig. E13.3.
• The catalyst is laid down in a haphazard manner above a screen to 

a height of 120 cm, and fluid flows downward through this packing.
 A sloppy pulse of radioactive tracer is injected directly above the bed, 
and output signals are recorded by Geiger counters at two levels in the 
bed 90 cm apart.
The following data apply to a specific experimental run. 
Bed voidage = 0.4,superficial velocity of fluid (based on an empty tube) 
= 1.2 cm/sec, and variances of output signals are found to be







• Figures show the findings for flow in pipes. This model represents 
turbulent flow, but only represents streamline flow in pipes when the 
pipe is long enough to achieve radial uniformity of a pulse of tracer. 

• For liquids this may require a rather long pipe, Note that molecular 
diffusion strongly affects the rate of dispersion in laminar flow. 

• At low flow rate it promotes dispersion; at higher flow rate it has the 
opposite effect.

• Correlations similar to these are available or can be obtained for 
flow in beds of porous and/or adsorbing solids, in coiled tubes, in 
flexible channels, for pulsating flow, for non-Newtonians, and so on.



Experimental findings on dispersion of fluids flowing with mean axial velocity u in packed 
beds.
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CHEMICAL REACTION AND DISPERSION
Our discussion has led to the measure of dispersion by a dimensionless 
group D/uL. 
Let us now see how this affects conversion in reactors.
Consider a steady-flow chemical reactor of length L through which fluid 
is flowing at a constant velocity u, and in which material is mixing axially 
with a dispersion coefficient D. 
Let an nth-order reaction be occurring.

A products,     -rA = kCA
n

By referring to an elementary section of reactor as shown in Fig., the 
basic material balance for any reaction component

input = output + disappearance by reaction + accumulation
becomes for component A, at steady state,
 
(Out-in)bulk flow  + (out-in)axial dispersion+ disappearance by reaction + 
accumulation = o

The individual terms (in moles A/time) are as follow







First-Order Reaction



• Exit conditions the solution is

Figure is a graphical representation of these results in useful form, prepared by 
combining, and allows comparison of reactor sizes for plug and dispersed plug flow.
For small deviations from plug flow D/uL becomes small, the E curve approaches
gaussian;
hence, on expanding the exponentials and dropping higher
order terms Eq. 19 reduces to 



• compares the performance of real reactors which are close to plug 
flow with plug flow reactors. 

• Thus the size ratio needed for identical conversion is given by

CONVERSION FROM THE DISPERSION MODEL

Conversion in the real reactor is found from Fig. 13.19. Thus moving 
along the k = (0.307)(15) = 4.6 line from CICo = 0.01 to DIuL = 0.12, 
we find that the fraction of reactant unconverted is approximately



Comments. Figure shows that except for a long tail the dispersion model 
curve has for the most part a greater central tendency than the actual curve.
On the other hand, the actual curve has more short-lived material leaving 
the vessel














