The Dispersion Model

Chapter 13



Choice of Models

Models are useful for representing flow in real vessels, for scale up, and
for diagnosing poor flow.

We have different kinds of models depending on whether flow is close to
plug, mixed, or somewhere in between.

Chapters deal primarily with small deviations from plug flow.

There are two models for this: the dispersion model and the tanks-in-
series model.

They are roughly equivalent. These models apply to turbulent flow in
pipes, laminar flow in very long tubes, flow in packed beds, shaft kilns,
long channels, screw conveyers, etc.

For laminar flow in short tubes or laminar flow of viscous materials these
models may not apply, and it may be that the parabolic velocity profile is
the main cause of deviation from plug flow.

We treat this situation, called the pure convection model, in Chapter 15.
If you are unsure which model to use go to the chart at the beginning of
Chapter 15.

It will tell you which model should be used to represent your setup.



AXIAL DISPERSION

Suppose an ideal pulse of tracer is introduced into the fluid
entering a vessel.

The pulse spreads as it passes through the vessel, and to
characterize the spreading according to this model (see Fig.),
we assume a diffusion-like process superimposed on plug
flow.

We call this dispersion or longitudinal dispersion to distinguish
it from molecular diffusion.

The dispersion coefficient D (m?2/s) represents this spreading
process. Thus

« Large D means rapid spreading of the tracer curve
« small D means slow spreading
D =0 means no spreading, hence plug flow
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(H_L) is the dimensionless group characterizing the spread in the whole vessel.

We evaluate D or D/uL by recording the shape of the tracer curve as it passes
the exit of the vessel. In particular, we measure

t = mean time of passage, or when the curve passes by the exit

o = variance, or a measure of the spread of the curve



These measures, f and o2, are directly linked by theory to D and D/uL. The
mean, for continuous or discrete data, is defined as
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The variance represents the square of the spread of the distribution as it

passes the vessel exit and has units of (time)2.

It is particularly useful for matching experimental curves to one of a family
of theoretical curves



Concentration

« Consider plug flow of a fluid, on top of which is superimposed some
degree of backmixing, the magnitude of which is independent of position
within the vessel.

« This condition implies that there exist no stagnant pockets and no gross

bypassing or short-circuiting of fluid in the vessel.

« This is called the dispersed plug flow model, or simply the dispersion
model.



For molecular diffusion in the x-direction the governing differential
equation is given by Fick's law:
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where D, the coefficient of molecular diffusion, is a parameter which
uniquely characterizes the process.

In an analogous manner we may consider all the contributions to
intermixing of fluid flowing in the x-direction to be described
Representation of the dispersion (dispersed plug flow) model.
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where the parameter D, which we call the longitudinal or axial dispersion
coeficient, uniquely characterizes the degree of backmixing during flow.

We use the terms longitudinal and axial because we wish to distinguish
mixing in the direction of flow from mixing in the lateral or radial direction,
which is not our primary concern.

These two quantities may be quite different in magnitude.

For example, in streamline flow of fluids through pipes, axial mixing is
mainly due to fluid velocity gradients, whereas radial mixing is due to
molecular diffusion alone.

In dimensionless form where z = (ut + x)/L and 6 = t/t = tu/L, the basic

differential equation representing this dispersion model becomes
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where the dimensionless group (ﬁ), called the vessel dispersion number, is

the parameter that measures the extent of axial dispersion. Thus



% — 0 negligible dispersion, hence plug flow

D . . .
" Al large dispersion, hence mixed flow
I

This model usually represents quite satisfactorily flow that deviates not
too greatly from plug flow, thus real packed beds and tubes (long ones
if flow is streamline).

Fitting the Dispersion Model for Small Extents of
Dispersion, D/uL < 0.01

* |If we impose an idealized pulse onto the flowing fluid then dispersion
modifies this pulse.

« For small extents of dispersion (if D/uL is small) the spreading tracer
curve does not significantly change in shape as it passes the measuring
point (during the time it is being measured).

« Under these conditions the solution to Eq is not difficult and gives the
symmetrical curve.



_ 1 ol - - HP]
e = S TTAN P[ 4(D/uL)

The equations representing this family are
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« Note that D/uL is the one parameter of this curve. Figure shows a
number of ways to evaluate this parameter from an experimental
curve: by calculating its variance, by measuring its maximum height
or its width at the point of inflection, or by finding that width which

includes 68% of the area.

» Also note how the tracer spreads as it moves down the vessel. From
the variance expression of Eq. 8 we find that
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additivity of means and of variances of the E curves of vessels a,b,. . . ,n.

Fortunately, for small extents of dispersion numerous simplifications and
approximations in the analysis of tracer curves are possible.

First, the shape of the tracer curve is insensitive to the boundary condition
imposed on the vessel, whether closed or open .So for both closed and open

vessels — T . -
I‘Il:|:|uI5|: = E and II:‘Etl:]:- = F.



For a series of vessels the r and o of the individual vessels are additive, thus,
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The additivity of times is expected, but the additivity of variance is not
generally expected.

This is a useful property since it allows us to subtract for the distortion

of the measured curve caused by input lines, long measuring leads, etc.
This additivity property of variances also allows us to treat any one-shot
tracer input, no matter what its shape, and to extract from it the variance of

the E curve of the vessel. _
Ao- = Il:'riu: _ l}-'rizn
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Thus no matter what the shape of the input curve, the D/uL value for the
vessel can be found.

The goodness of fit for this simple treatment can only be evaluated by
comparison with the more exact but much more complex solutions.

From such a comparison we find that the maximum error in estimate of
D/uL is given by

error < 3% when E— = (.01
il



Large Deviation from Plug Flow,
D/UL > 0.01

Here the pulse response is broad and it passes the measurement
point slowly enough that it changes shape-it spreads-as it is being
measured.

This gives a non symmetrical E curve.
An additional complication enters the picture for large D/uL.:

What happens right at the entrance and exit of the vessel strongly
affects the shape of the tracer curve as well as the relationship
between the parameters of the curve and D/uL.

Let us consider two types of boundary conditions: either the flow is
undisturbed as it passes the entrance and exit boundaries (we call
this the open b.c.),

or you have plug flow outside the vessel up to the boundaries (we
call this the closed b.c.).

This leads to four combinations of boundary conditions, closed-
closed, open-open, and mixed.
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Figure illustrates the closed and open extremes, whose RTD curves are
designated as E..and E,..

Now only one boundary condition gives a tracer curve which is identical
to the E function and which fits all the mathematics of Chapter 11, and
that is the closed vessel.

For all other boundary conditions you do not get a proper RTD.

In all cases you can evaluate D/uL from the parameters of the tracer
curves; however, each curve has its own mathematics.

Let us look at the tracer curves for closed and for the open boundary
conditions.



Tracer response curves for closed vessels and large deviations from plug

flow.

Closed Vessel. Here an analytic expression for the E curve is not available.
However, we can construct the curve by numerical methods, see Fig., or
evaluate its mean and variance exactly, as was first done by van der Laan

(1958). Thus
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to symmetrical.
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Eq. 1 (see previous
saction),




Open Vessel. This represents a convenient and commonly used experimental
device, a section of long pipe (see Fig. 13.9).

Introduce Measure

A squirt of tracer across the Measure the intensity of light
cross section, or a flash of by "looking through the wall"
radiation to light sensitive or measure conductivity with
fluid, etec. a small probe, etc.

» |t also happens to be the only physical situation (besides small D/uL)
where the analytical expression for the E curve is not too complex.

« The results are given by the response curves shown in fig.
« the following equations, first derived by Levenspiel and Smith
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Comments

(a) For small D/ul the curves for the different boundary conditions all ap-
proach the “small deviation™ curve of Eq. 8. At larger D/ul the curves
differ more and more from each other.

(b) To evaluate D/uL either match the measured tracer curve or the measured
o to theory. Matching o is simplest, though not necessarily best; however,
it is often used. But be sure to use the right boundary conditions.



(¢)

(d)

(e)

(®

If the flow deviates greatly from plug (D/ul large) chances are that the
real vessel doesn’t meet the assumption of the model (a lot of independent
random fluctuations). Here it becomes questionable whether the model
should even be used. I hesitate when D/ul. > 1.

You must always ask whether the model should be used. You can always
match ¢? values, but if the shape looks wrong, as shown in the accompa-
nying sketches, don’t use this model, use some other model.

For large D/uL the literature is profuse and conflicting, primarily because
of the unstated and unclear assumptions about what is happening at the
vessel boundaries. The treatment of end conditions is full of mathematical
subtleties as noted above, and the additivity of variances is questionable.
Because of all this we should be very careful in using the dispersion model
where backmixing is large, particularly if the system is not closed.

We will not discuss the equations and curves for the open-closed or closed-
open boundary conditions. These can be found in Levenspiel (1996).



« Here the output F curve is S-shaped and is obtained by integrating

Step Input of Tracer

the corresponding E curve. Thus at any time tor 6
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Small Deviation from Plug Flow, D/uL < 0.01
 From Egs. we can find the curves of Fig.

* For these small deviations from plug flow we can find D/uL directly by

plotting the experimental data on probability graph paper as indicated
in Fig. .
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Probability plot of a step response signal. From this we find D/uL directly.



Step Response for Large Dispersion, D/uL > 0.01.

« For large deviations from plug flow, the problem of boundary
conditions must be considered, the resulting S-shaped response
curves are not symmetrical, their equations are not available, and
they are best analyzed by first differentiating them to give the
corresponding Cpulse curve. Figure shows an example of this
family of curves.

« Step response curves for large deviations from plug flow in closed
vessels.
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(a) One direct commercial application of the step experiment is to find the
zone of intermixing-the contaminated width-between two fluids of
somewhat similar properties flowing one after the other in a long
pipeline.

Given D/uL we find this from the probability plot of Fig. Design
charts to ease the calculation are given by Levenspiel (1958a).

(b) Should you use a pulse or step injection experiment?
Sometimes one type of experiment is naturally more convenient for
one of many reasons. In such a situation this question does not arise

But when you do have a choice, then the pulse experiment is
preferred because it gives a more "honest" result.
The reason is that the F curve integrates effects; it gives a smooth good-
looking curve which could well hide real effects.



» For example, Fig. shows the corresponding E and F curves for a given

vessel.

The double peak

is clearly evident.
You can't miss it.

l

Did you
miss this?

This little dip
could easily
be ignored.

I

Sensitivity of the E and F curves for the same flow.

D/uL FROM AN F CURVE

On the assumption that the closed vessel of Example 71.1, Chapter 11, is
well represented by the dispersion model, calculate the vessel dispersion
number D/uL. The C versus t tracer response of this vessel is

ft,min [0 5
Cuser gm/liter [0 3

10 15 20 25 30 35

> 4 2 1 0



Since the C curve for this vessel is broad and unsymmetrical, see Fig. 11.E1, let
us guess that dispersion is too large to allow use of the simplification leading to
Fig. 13.4. We thus start with the variance matching procedure of Eq. 18. The
mean and variance of a continuous distribution measured at a finite number of
equidistant locations is given by Eqs. 3 and 4 as
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> C, 2 C, 2 C, 2 C,

YC=3+5+5+4+2+1=20
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S HC,=(25%3)+ (100 X5) + - - - + (900 X 1) = 5450 min®
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Now for a closed vessel Eq. 13 relates the variance to D/ulL. Thus
D D \°

- = ) —_ = i—— — a-uliD
03=0211=2-7 z(HL) (1 — eulb)

Ignoring the second term on the right, we have as a first approximation

D _
EE = ().106

Correcting for the term ignored we find by trial and error that

D _
— =012

=



von Rosenberg (1956) studied the displacement of benzene by n-
butyrate in a 38 mm diameter packed column 1219 mm long,
measuring the fraction of n-butyrate in the exit stream by refractive
index methods.

When graphed, the fraction of n-butyrate versus time was found to
be S-shaped. This is the F curve, and it is shown in Fig. for von
Rosenberg's run at the lowest flow rate,where u = 0.0067 mm/s,
which is about 0.5 m/day. Find the vessel dispersion number of this
system.
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« Instead of taking slopes of the F curve to give the E curve and then
determining the spread of this curve, let us use the probability paper
method. So, plotting the data on this paper does actually give close
to a straight line, as shown in

Percent of second fluid

% n-butyrate in outlet

|
1756 130 185 190 195
1, (sec % 1073)



« To find the variance and D/uL from a probability graph is a simple
matter.

« Just follow the procedure illustrated in Fig.. Thus Fig. shows that
the 16th percentile point falls at t = 178 550 s

the 84th percentile point falls at t = 187 750 s
and this time interval represents 2u.
Therefore the standard deviation is

and this time interval represents 2o. Therefore the standard deviation is

187 750 — 178 500
= 2

We need this standard deviation in dimensionless time units if we are to find
D. Therefore

= 4600 s

0.0067 mm/s
1219 mm

Ty = % = (4600 5}( ) = 0.0252

a3 = (0.0252)* = 0.00064

D _oai
ul. 2

=

00032

Note that the value of D/ul is well below 0.01, justifying the use of the gaussian

approximation to the tracer curve and this whole procedure. =



D/ul. FROM A ONE-SHOT INPUT

» Find the vessel dispersion number in a fixed-bed reactor packed
with 0.625-cm catalyst pellets.

* For this purpose tracer experiments are run in equipment shown in
Fig. E13.3.

« The catalyst is laid down in a haphazard manner above a screen to
a height of 120 cm, and fluid flows downward through this packing.

A sloppy pulse of radioactive tracer is injected directly above the bed,
and output signals are recorded by Geiger counters at two levels in the
bed 90 cm apart.

The following data apply to a specific experimental run.

Bed voidage = 0.4,superficial velocity of fluid (based on an empty tube)
= 1.2 cm/sec, and variances of output signals are found to be

ot = 39 sec? and o} = 64 sec?. Find D/ulL.
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CORRELATIONS FOR AXIAL DISPERSION

The vessel dispersion number D/ulL is a product of two terms
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Figures show the findings for flow in pipes. This model represents
turbulent flow, but only represents streamline flow in pipes when the
pipe is long enough to achieve radial uniformity of a pulse of tracer.

For liquids this may require a rather long pipe, Note that molecular
diffusion strongly affects the rate of dispersion in laminar flow.

At low flow rate it promotes dispersion; at higher flow rate it has the

opposite effect.

Correlations similar to these are available or can be obtained for
flow in beds of porous and/or adsorbing solids, in coiled tubes, in
flexible channels, for pulsating flow, for non-Newtonians, and so on.
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CHEMICAL REACTION AND DISPERSION

Our discussion has led to the measure of dispersion by a dimensionless
group D/uL.

Let us now see how this affects conversion in reactors.

Consider a steady-flow chemical reactor of length L through which fluid
is flowing at a constant velocity u, and in which material is mixing axially
with a dispersion coefficient D.

Let an nth-order reaction be occurring.

A —>products, -ry=kCy,"
By referring to an elementary section of reactor as shown in Fig., the
basic material balance for any reaction component

iInput = output + disappearance by reaction + accumulation
becomes for component A, at steady state,

(Out-in)pyik flow + (OU-IN) axia dispersiont diSa@ppearance by reaction +
accumulation = o

The individual terms (in moles A/time) are as follow



moles A flow cross-sectional
volume / \ velocity area

entering by bulk flow = (

= CyuS, [mol/s]
leaving by bulk flow = C j.suS

dN dC
entering by axial dispersion = —2 = — (DS A)
I+al

dt dl
Can Co,i Ca 1+al Cas
I |
I} 7 ] 4>‘ Al 147 [ =| L
A entering by A leaving by
bulk flow bulk flow
A entering A leaving b}rh
by dispersion dispersion

/

Cross-sectional —/
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Disappearance {= 0, for steady state)
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leaving by axial dispersion = ANy = — (D S ﬁ)
dt dl ] i+a

disappearance by reaction = (—r,) V = (—r,)S Al, [mol/s]

(C, e C dl + dl
ALl A,J’) D [+4] {

Al Al
Q- 0Q,_ . AQ_dQ

lim ———— = lim

{E—hi] EE . ‘Jl A=) .&I d!

+(=ry)=0

So taking limits as Al — 0 we obtain

dC, d*C,
— =D + kCh =
“Tdl ap T KCa=0
In dimensionless form where z = /L and 7=t = L/u = V/v, this expression be-
comes . e
D A 4C, n
uL dz?  dz  FTeA=0
D &2X, dX,

uL dt  dz ORI X)) =0



First-Order Reaction

1 —IA = CA.I'ICAD



e Exit conditions the solution is

4a ex (l%)
Ca_y x P2 D
Can A

(1+ a)Eexp(g%) - (1 —H}Zexp(— g%)

a="V1+ dkr(D/ul)

Figure is a graphical representation of these results in useful form, prepared by
combining, and allows comparison of reactor sizes for plug and dispersed plug flow.
For small deviations from plug flow D/ulL becomes small, the E curve approaches
gaussian;

hence, on expanding the exponentials and dropping higher

order terms EqQ. 19 reduces to

C, i D
C exp| —kt+ (k1) ” L]

i 2 42
= exp —kr+k2ﬂr]



« compares the performance of real reactors which are close to plug
flow with plug flow reactors.

* Thus the size ratio needed for identical conversion is given by

I, V D

L,-y, " 1tGknp  forsameCyo,
Ca D

A =14 (k)P — 4

CAF { } L or same or T

CONVERSION FROM THE DISPERSION MODEL

D
—={).12
ul
Conversion in the real reactor is found from Fig. 13.19. Thus moving

along the kz=(0.307)(15) = 4.6 line from C/C, = 0.01 to D/uL = 0.12,
we find that the fraction of reactant unconverted is approximately
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Comments. Figure shows that except for a long tail the dispersion model
curve has for the most part a greater central tendency than the actual curve.
On the other hand, the actual curve has more short-lived material leaving
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13.3. RTD studies were carried out by Jagadeesh and Satyanaravana (IEC/PDD
11 520, 1972) in a tubular reactor (L = 1.21 m, 35 mm ID). A squirt of
NaC(l solution (5 N) was rapidly injected at the reactor entrance, and
mixing cup measurements were taken at the exit. From the following results
calculate the vessel dispersion number; also the fraction of reactor volume
taken up by the baffles.

t, sec NaCl in sample
0-20 0
20-25 60
25-30 210
30-35 170
35-40 75
40-45 35
45-50 10
50-55 3
55-70 0

(v = 1300 ml/min)
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13.5. An injected slug of tracer material flows with its carrier fluid down a long,
straight pipe in dispersed plug flow. At point A in the pipe the spread of
tracer is 16 m. At point B, 1 kilometer downstream from A, its spread is

32 m. What do you estimate its spread to be at a point C, which is 2
kilometers downstream from point A?
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13.7. Kerosene and gasoline are pumped successively at 1.1 m/s through a 25.5-
cm ID pipeline 1000 km long. Calculate the 5/95%-95/5% contaminated
width at the exit of the pipe given that the kinematic viscosity for the 50/

50% mixture is
wlp=0.9x10"°m?s
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13.11. The kinetics of a homogeneous liquid reaction are studied in a flow reactor,
and to approximate plug flow the 48-cm long reactor is packed with 5-
mm nonporous pellets. If the conversion 1s 99% for a mean residence time
of 1 sec, calculate the rate constant for the first-order reaction
(a) assuming that the liquid passes in plug flow through the reactor
(b) accounting for the deviation of the actual flow from plug flow
(c) What is the error in calculated k if deviation from plug flow is not con-
sidered?
Data: Bed voidage € = (0.4
Particle Reynolds number Re, = 200
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13.13. Calculations show that a plug flow reactor would give 99.9% conversion
of reactant which is in aqueous solution. However, our rector has an RTD
somewhat as shown in Fig. P13.13. If C,, = 1000, what outlet concentration
can we expect in our reactor if reaction is first order? From mechanics
a? = a%24 for a symmetrical triangle with base a, rotating about its center
of gl’ﬂ?lt}ﬂ from mechanics

A o = aE .. for a symmetrical triangular distribution
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