Chapter 3

Interpretation of Batch
Reactor Data




Batch Reactor Data

» Determination of the rate equation is usually a
two-step procedure

» First the concentration dependency is found at
fixed temperature

» Temperature dependence of the rate constants
is found




Batch Reactor Data

»  Empirical information is obtained can be
divided into two types

» Batch reactors
» Flow reactors

» Batch reactor is simply a container to hold
the contents while they react

» Extent of reaction at various times, and this
can be followed in a number of ways




Measure of extent
of reaction at various time

»By following the concentration of a given component

» By following the change in some physical property of the fluid

e.g. electrical conductivity or refractive index

» By following the change in total pressure of a constant-

volume system

» By following the change in volume of a constant-

pressure system

experimental batch reactor is usually operated
Isothermally and at constant volume




Batch Reactor Data

Relatively simple device adaptable to small-scale

laboratory set-ups
» need little auxiliary equipment or instrumentation
» used whenever possible for obtaining homogeneous

kinetic data

Flow reactors

» flow reactor is used primarily in the study of the




Analyzing kinetic data

Two procedures for analyzing kinetic data
» Integral methods

» differential methods

Integral methods:

» In the integral method of analysis we guess a particular form of
rate equation

» Appropriate integration and mathematical manipulation,

» Predict the plot of a certain concentration function versus time

» Yield a straight line




Integral methods Analysis

» The integral method can only test this or that particular
mechanism or rate form

» Integral method Is easy to use

» Recommended when testing specific mechanisms

» Relatively simple rate expressions

» When the data are so scattered that we cannot reliably
find the derivatives needed in the differential method

suggested that integral analysis be attempted first, and, if
not successful, that the differential method be tried.




Differential methods

Differential method of analysis

» First find (I/V)(dNIdt) from the data

» Test the fit of the rate expression to the data directly and

without any integration

» Attempting the fitting procedure.

» The differential method is useful in more complicated
situations

» reguires more accurate or larger amounts of data

» used to develop or build up a rate equation to fit the data




CONSTANT-VOLUME BATCH REACTOR

» Actually means a constant-density reaction system

_1dN, _d(N/V) _dC,
"TYVa T dr | dr
» For ideal gases, where C = p/RT

» Rate of reaction of any component is given by the rate
of change of its concentration or partial pressure

» Develop the general expression which relates the
changing total pressure of the system /7to the changing
concentration or partial pressure of any of the reaction
components.




Total Pressure Data Obtained in a
Constant-Volume System

General stoichiometric equation
» Each term indicate the number of moles of that

component
aA + bB +e= rR + 55 + oo
At time 0: Ny Npg Npao Ny Niert
Attimer: Ny =N,,—ax  Ng= Ny, — bx Np=Npy+rx  Ny=Ng +sx Ninert

» Total number of moles present in the system is
Ny = Npg+ Npg+ - -+ Npg+ Ny + -+ + + Nigey
» At time fit is
N=Ny+x(r+s+---—a—b—---)=Ny+xAn

where

An=r+s+---—a—b—---



Total Pressure Data

_ Pa _NA_NAO_ax

Ca

"RT V OV
C :NAO__ a N_NO
A | %4 An V

a

Pa=CART =ppy— K’; (7 — )

total pressure /7at time ¢ initial partial pressure of A, p,,, and initial
total pressure of the system, /7o

Similarly, for any product R

r
Pr = CRRT = ppy + :’_\—n (m — m)

If the precise stoichiometry is not known, or if more than one
stoichiometric equation is needed to represent the reaction,
then the "total pressure” procedure cannot be used.




Conversion

» Suppose that N, is the initial amount of A in the
reactor at time ¢t = 0,

» that N, is the amount present at time ¢.

AT Nao NV Cy




Integral Method of Analysis of
Data

» lintegral method is especially useful for fitting simple
reaction

Irreversible Unimolecular-Type First—-Order Reactions
A —products

» Test the first—-order rate equation
dC,

—FA = —_Elt_ = kCA

» Separating and integrating we obtain

CA dCA t C
JCAO CA »[0 In CAO kt

» In terms of conversion

X,
— kA - Xy




lintegral method

» Rearranging and integrating gives

J‘XA dX, "kjd

» Plotof In (1 - X,) orIn (C,/C,,) vs. t

» Straight line through the origin for this form of rate of
equation

» First order but are not amenable to this kind of analysis

_4Ch _ = kCYCY
dt




Irreversible Bi-molecular type
Second-Order Reactions

A + B —products

Corresponding rate equation
dC,  dCg

AT T T Ta kGG

Amounts of A and B that have reacted at any time ¢ are
equal and given by C, X

179, 4
—FpA = CAo““a;é = k(Cpp = CagXa)(Cpo — CppXn)

Letting M = Cg,/Ca,
dX
A= CAOTIA = kCho(1 = X,)(M — X,)
On separation and formal integration becomes

X, dX,
f o (1-X)M~—X,)

= Cpok f ; dt




» Test for the bimolecular mechanism A+ B -> R with C,, # Cg,

» Breakdown into partial fractions, integration, and rearrangement, the
final result in a number of different forms
1—X; M-X,

lnl—XA =1

CgC C
n =In—="2=1n—2>
M(l - XA) CBocA MCA

= CAO(M - 1)kt == (CBO - CAn)kt, M ?é 1

» Linear plot between the concentration function and time for this
second-order rate law

A A
Q| 9
Eq. 14 SIE
m) <
(SRIS)
S . o
= e °
Siope = (CBO - CAO)k < <
< 5 Eq. 14
" Cro |z
Intercept = In Coo InM :E Slope = (Cgg — Cagk
> 0

Y




Special case

» If Cg, Is much larger than C,, remains approximately
constant at all times, and approaches for the first-order
reaction

» Second order reaction becomes a pseudo first-order
reaction

For the reaction
2A — products

dCc
ra= =g = kCh=kCho (1 = Xp)?

11 _ 1 X\ _ .
CA CAO CAol"XA




Special case

» Test for the bimolecular mechanisms, A + B -> R
Wlth CAO — CBO
for '

Eq. 16\

Eq. 16

Slope =k

XA/(]' - XA)

Slope = Cpgk

o
Y
(@)

Y

! t

The integrated expression depends on the stoichiometry as
well as the kinetics

A + 2B — products




Second-order reaction

» Second order overall, first order with respect to both A
and B ic,
Fa = — dr kCoCg = kCho (1 — Xp)(M — 2X,)

» Integrated form

CBCA[]: i M_ZXA
CBOCA M(l o XA)

» Stoichiometric reactant ratio is used the integrated
form

11 _ 1 X,
CA CAO CAol_XA

= 2kt, M=2




Third-Order Reactions
Irreversible Trimolecular-Type

Irreversible Trimolecular-Type
A + B + D —products

Rate eguation be
X cra= =2 keic,c,
In terms of X Ix c c
A CAOTIA= kC3A0 (1 - XA) (C—Z - XA) (C_iz - XA)
On integration, after manipulation
1 In CAO+ 1 In Cro
(CAO - CBO)(CAO - CDO) CA (CBO - CDO)(CBO - CAO) CB
1 C

+ In =2 = kt
(CDO - CAO)(CDO - CBO) CD



Third-Order Reactions
Special case

v If Cp, is much larger than both C,,and C;, reaction
becomes second order Trimolecular reactions

A +2B—R with —ry=——2=kC,C}
» In terms of conversions the rate of reaction

axX
TIA = kCiO (1 - XA)(M - ZXA)2

» On integration this gives

where M = Cy/Cp,

(2Cap — Cyo)(Cyy — Cs) +1In CaCe = (2C 4 — Cgo)’kt, M#2

CBI.']CB CACB[!




Third-Order Reactions
Special case

» for the reaction A+B -> R
dC, _

—F A = d‘r — kcﬂczﬂ
» On integration
(Cap — Co)(Cyo — Cg) CaoC ) 2
CarCs +In 2= (Cog = CooPkts, M#1

1 1
Ci Ci 24,

p—



Empirical Rate Equations of nt" Order

When the mechanism of reaction is not known

dc,
TS

= kCy
» On separation and integration yields

Cin—Clr=(n—Dkt, n#1

1-n
CAO

(1—-n)k

» Reactions with order n > 1 can never go to completion
in finite time

Cy=0 at =

» n < 1, reactant concentration will fall to zero and then
become negative at some finite time




Zero-Order Reactions

» Rate of reaction is independent of the concentration of
materials

» Integrating and noting that C, can never become

n \Y;
egative e,

A dt

k

C
CN:I_ Cﬁ: CﬁﬂXh= kf fDI' t":_ﬁg

C
C,=0 for t=—20

k

» Means that the conversion is proportional to time
» As a rule, reactions are of zero order only in certain
concentration ranges-higher concentrations



Zero-order reaction

» Test for a zero-order reaction

Note the
| deviation
| from

a | zero-order
Eq. 31 | kinetics

| .

; \\\ . Caok




Overall Order of Irreversible
Reactions from the Half-Life ¢; ,

» Irreversible reaction

aA + 8B + - - - —products

acC
—TA:_"a}é=kC‘AC%'“

» Reactants are present in their stoichiometric ratios
» Thus, for reactants A and B at any time

Cy/C, = Bla




Half-Life of the reaction

» Integrating forn# 1 )
Cin— Cly=k(n— 1)t
» half-life of the reaction, t,,, as the time needed for the
concentration of reactants to drop to one-half the original

value

» Plot of log t,, vs. log C,, gives a straight line of
slope (1 — n)

A

Eg. 33a o
V_>',‘\ Slope =1 -~ n

0.5)!" -1 <
ty = ( ~ ) C]&-D" ;/"\Order< 1 Order > 1
k(n —1) ~ Order=1

-
N i

log t /5

log Cao




Fractional Life Method, ¢-

» Concentration of reactant drops to any fractional value
F = CL/C,,In time, t;

» Derivation is a direct extension of the half-life

method Flon 1

_ 1
Iy k(n— 1) C a0

» Plot of log t: versus log C,, show straight line




Multiple reactions

» Irreversible Reactions in Parallel
» Decomposition of A by two competing paths,
» Both elementarv kreactions
A—>R
ky
A—2>§

» rates of change of the three components

—FA T T ""d"'""_ = kch + kch = (kl + kZ)CA




Evaluation of the rate constants for two
competing elementary reaction

From the stoichiometry, C,+ C; + C, Is constant
k values are found using all three differential rate

equations

C
—In =2 = (k; + ky)t
Cao

Plotted as the slope is k; + &,
Further equation on when integrated gives

Fg d CS kz 0 - 1

Eq. 38

Y
o




Homogeneous Catalyzed Reaction

ky
A—R

. A+C—%R+C
» Corresponding reaction rates

dCn\ B @) _
() e () -ve

» Overall rate of disappearance of reactant A is

dC
Bl _gté = kiCa + kyCoCc = (k1 + k,C)Cy

» On integration




Homogeneous Catalyzed Reaction

C
_ln_'_i = —In (]— - XA) = (kl + kZCC)I - kubsan'edr
C.A.ﬂ'

A

o]
S|Ope = k2 \ (o]

kobserved

=
—

Kobserved = k1 + koCg, from Eq. 40

0 >
0]
Ce

» Plot the k _,..req ValUE against the Cc

» Making a series of runs with different catalyst concentrations
to find k; and k,




Special case competing reactions

» First-order reactions of the type
A::’:R
S

» concentration-time curves




Autocatalytic Reactions

» Products of reaction acts as a catalyst

A+R—>R+R
» Rate equation
¥ =-—g££==kC C
A dt A%R
» Total number of moles of A and R remain unchanged

Cy = C, + Cp = C,y + Cgy = constant

» Rate equation becomes

—

dC
TFpA = T —dTA =kCA(Cy— Cy)

» Rearranging and breaking into partial fractions

dC, 1 (ch dcC, )
- = + = k dt
CA(CO - CA) CA Co - CA




On integration
CAO(CO B CA) = In CR/ CRO
CA(CO - CAO) CA/ CAO

Conversion-time and rate-concentration

SS in 4.
A A Qv.ﬁ'ge._ - E C’/})@

N

1

In = Cokt = (Cyo + Cgyg) kt

N\

|
Low rate } S:zrt Wgh
me
;l I)/_ present
Xﬂ. =Ip |
|
High rate Parabolic
| |
‘f I I
ol=" Low rate X o ! E L
0 : g 0 Cp = Cg 1 g
CalCao
M+ X,

If M — CRO/CAO IDW—X—A) = CAO(M + l)kt = (CAO + CRo)kt
Test for an autocatalytic reaction

Plot the time and concentration
a straight line passing
through zero is obtained

IS
l
g % Slope = Cgk

Eq. 42 or 43

o CaoCr
CaCro
\

 /




Irreversible Reactions in Series

» Consecutive unimolecular type first-order reactions

A—>R-—255
» Rate equations for the three components

dcC Ca _ — -
rAz__&.;é:_leA —-lnC—M-—klt or C,= Cye™

dC dC
re == =kCs — kCr —F+ G = ki Cpge ™

dCy ekt ekt )

e e +
’s dt kch Cr = Cacks (kz —ky k- ky
CAO - CA + CR + CS
Cs = Cyo (1 + e kil + k1 e‘kzt)
ki =k, k, — ky

» If k,is much larger than k;  G=Cuh(-e*), K>k
much larger than k, G =Cy(-e*), K>k




Reactions in Series

» Values of k; and k, also govern the location and
maximum concentration of R

» Setting dCxldt =0 1 In(kyky)

. =
e kiogmaan kz - kl

» Maximum concentration of R is found by

k,

- A
Crumax _ (kl)"%fikz k)

CA(} A—»R—5
Cg"iﬂ
Eq. 47

Eq. 50 Cs




First-Order Reversible Reactions

» Unimolecular-type reaction

k
A z*kl—" R, K= K = equilibrium constant
2

dC dC dX
@@ g kG kG

» Concentration ratio M = C /C,,
= ky (Cap = CagXa) = ky (MCy + CyppXp)
» At equilibrium dC,/dt =0

_Cre M+ X,,
CAe_ 1_)(Ae

K¢




v

The equilibrium constant I
K=
k2

Combining equations, in terms of the equilibrium

conversion dXA B kl (M + 1) (X Ly
d M+X, % A)

As a pseudo first-order irreversible reaction

v

v

X Cy—

= k.t
Xac nCAO_CAe M+X,, "

v

Aplot of -In(1- X,/ X,,)Vvs. T 3

v

Special case of the reversible
reaction in which
Cuh =0, 0r X, =1, or Kc = 00.




Second-Order Reversible Reactions
» Bimolecular-type second-order reactions

k

5 k

k k
2A =—=2R A+ B=—=2R

ko

» Restrictions that C,, = C;,, and C;, =C;, =0

» Integrated rate equations for A and B are all
identical

Xa, = (2X,, — 1) X, 1
2k1 - ]. CAOt
XAe




Reversible Reactions

» A plot can then be used to test the adequacy of these

kinetic
A

» orders other than one or
two, integration of the B Ea. 56
rate equation becomes "f g
cumbersome 5 :?
|
- Slope = 2k, (X—Ae- 1) Cao

-
t

» Rate equation is best done by the differential method




Reactions of Shifting Order

» Data are well fitted by one reaction order at high
concentrations but another order at low concentrations

A—-R _, =_dCA= k.C,
A dt 1+k,C,
» At high C,the reaction Is of zero order with rate constant
Ki/K, (or k,C, >>1)

» At low C,-the reaction is of first order with rate constant
K, (or k,C, <<1)

» Integral method, separate variables and integrate

C
h‘l"“"pLO + kz (CAO — CA) - klt
Ca



Reactions of Shifting Order

To linearize, rearrange

CAO—CAz_l_'_I_Cl( t )
In (C,/Cy) ky k&, \In(C,y/Cp)

Two ways to test this rate

In (Caf/Co) __, . kit
A/
Cao — Ca Cao — Ca
A A
Eq. 58b~\
Eq. 58c _k

R - Slope = }4-2— \
<
S|S Slope = Sl
Sl e o| &
= 0 S = 0 -

/ Cao~-Ca / In(Cao/Ch)

" Intercept = —ks h. Intercept = - é

W



Find A Rate Equation Using The

Integral Method

A — products
Column 1 Column 2 Column 3 Column 4
Time Concentration In % 1
t, S C,, mol/liter Ca Cy
0 Cro = 10 In 10/10 = 0 0.1

20 8 In 10/8 = 0.2231 0.125
40 6 0.511 0.167
60 5 0.6931 0.200
120 3 1.204 0.333
180 2 1.609 0.500
300 1 2.303 1.000

~

Reported data Calculated



Solution

» Guess First-Order Kinetics
This means that InC,/C, vs t should give a straight line

» Guess Second-Order Kinetics
1/C, vs. t should give a straight line

A
4 1.0

Second-order kinetics should
fall on a straight line.

0.8 These data do not,

so reject

First-order kinetics should
fall on a straight line.

2 These data do not,

so reject

- 06 f—
n A0 1
CA CA
1 0.4+
\ Data from
\_ Data from
columns 1 and 3 0.2 columns 1 and 4
0d I | | | 0 | | L
0 50 100 200 3( 0 50 100 200 300

Timezt s




Find a Rate Equation

v Guess nth-Order Kinetics
fractional life method with F = 80%

Take logarithms ~ , _(08"™ -1 .,
Fok(n—1) A

(\ a constant
A

r I

1-
log t = log (%_F) + (1-n) log C,,

-—— - — e wm mm mm mm A e e —— - e e e e

» First accurately plot the C, vs. ¢ data
» Draw a smooth curve to represent the data




Find A Rate Equation

Choose C,, = 10, 5, and 2 From the curve
Next, plot logt: vs. logC,,

From the curve Chons Time needed
Cao (= 0.8C,,) tg S log t log C,,
10 8 0—>18.5=18.5 log 18.5=1.27 1.00
5 4 59 — 82 =23 136 0.70
2 1.6 180 — 215=35 1.54 0.30
10 ’ A
A smooth curve does not 1.75
8 necessarily pass through
all the data points
- 1.5
&
______ 1.25 —
1.0 ' L 5>
> 0 0.5 1.0

In CAO



Find A Rate Equation
» Pick C,, = 10, for which t,=18.5s

— 0.8 -1 1-1.4
18.5 k(1A =) 10

k =0.005

Rate equation that represents this reaction is

_ liter™ \ ., mol
£ (0'005 mol%4- s) C&s liter - s




Differential Method of AnalysiS

<
>
<

Plot the C, vs.t data
Draw a smooth curve

Determine the slope of this curve

» Slopes dC,/dt = r, are the rates of reaction

A

If the data fall on
a straight line, you've
guessed correctly.

dCp
T dr

o ©

Guess f(Ca)



Differential Method of Analysis

- th
b Test.mg n o.rder form —r, = kC”
» Taking logarithms

109
\ _ A
Smooth curve to ™
R represent the data 3&
.
Reported experimental ?
s 6 data, seven points -
S ¥ Slope=n
= -
LS 4 E
<
I
? o0 Intercept = &
0 -
0 100 200 300 log Cp

Timet, s




Fit the M-M equation

» Set of C, vs t data to which we want to fit the M-M
equation

dC, Kk Ca 1 _ 1 .k
dt  1+k,C, (—ra) kCa Kk

Fao =

» 1/(-ry) vs. l/IC, or (=r )==’q_1[(-m)] 1S linear
Mok k| Ca
A kl*
NNy
Eqg. 61 o

1
A ) ° —TA

ko L-” \smpe=kl

k_l 1

- -

L



Rate Equation To Fit
The Differential Method

Column 1 Column 2 Column 3 Column 4 Column 5
Time Concentration Slope, from Fig. E3.2a
f, s C,, mol/liter (dC,/dr) log,, (—dC,/dt) log,, Ca
0 10 (10 — 0)/(0 — 75) = —0.1333 ~0.875 1.000
20 8 (10 = 0)/(=3 —94) = —0.1031 —0.987 0.903
40 6 (10 — 0)/(—21 — 131) = —0.0658 ~1.182 0.778
60 5 (8 — 0)/(—15 — 180) = —0.0410 —1.387 0.699
120 3 (6 — 0)/(—10 — 252) = —0.0238 —1.623 0.477
180 2 (4 — 1)/(24 — 255) = —0.0108 —-1.967 0.301
300 1 (3 = D/(—10 = 300) = —0.0065 —2.187 0.000
s | Stope = = ﬂo.a?Sl-_taz.sosl - 1.43
dC,
“Lof- log,, " logpk + nlog,,Cy
-2 g4 | e e e Emem e e e e s mm oo oam
X
. -lap Y J
s L intercept slope
2 sl
22 I N N T A dt . mol?# - g A7 liter-s
0 0.2 04 06 08 1
Q logig Ca
Intercept = log;g k = -2.305

k=0.005



VARYING-VOLUME BATCH REACTOR

» This kind of reactor can be used for iIsothermal constant
pressure operations

» V, = initial volume of the reactor

» V =the volume at time t.

V: Vo(]_ + SAXA)

dV
V - V =
XA = 0 dXA VOSA

V08A
» €41S the fractional change in volume of the system between no
conversion and complete conversion of reactant A.
VX&'I - VIA-[: A_>4R

E
A foﬂ . z4—1=3
A 1

» With 50% inerts present at the start, ea S%2-=1-5




Volume Change with Reaction

* Increase In the total number of moles per mole of A

reacted s_d c_b_
“a g a |
Ny = Np+0N,,X NN 98X = 1 + By, X

N Nra

change in total number of moles for complete conversion
“total number of moles fed to the reactor

&=

I rr
L a
: - V=V |
g = JEI_E_E_]!H___AI?:} il [FJT.:,L.I':]:'{ +eX)
id iif i _.|' L1
| g= :r's.:-ﬁlj compressbility factor willnot change

V= Ft,[Pllllf'l | J:']
_.I u




Volume Change with Reaction

* A mixture of 28% S0, and 72% air is charged to
a flow reactor in which SO, is oxidized.

SO, +:0, — SO,



VARYING-VOLUME BATCH REACTOR

Ny = Nyo(1 = XA)

C,= ﬂ _ Nl = X4)

V B Vu(1+ﬂﬁxh}
_c 1-X, Co  1-X, X, = 1—C,/C,,
'AD]. + E.‘LXA Cﬁu ]. + E,.!.X,.n. A 1+ Eﬁc.";'lrcﬂﬂ

The rate of reaction

1 dN,
=2 %NA
A V dt
. CAO dXA _ C-‘U:I d‘iﬂ"'_Cﬁu d(ln V}
AT+ eaXy) dt = AT Ve, di e, di

Differential Method of Analysis

Replace dC. .. CudV
it " Ve, dt

Cad(In V) This means plot (In V) vs. t and take slopes
g, dt




Integral Method of Analysis
» Zero-0Order Reactions

. Cwd(nv) _

k
A Ea I:'ff
A
Cap, ¥V
—In— = kit ke
gy ¥y \—El'I}I}E=—A
Cap
In
n'lr",:]
0 .
5| ken
ope = —=
pe=o
Eq. 70
for eg < 0 . ®

» logarithm of the fractional change in volume
versus time yields a straight line of slope «s,/c,,




Integral Method of Analysis
varying-volume reactor

First-Order Reactions
» Replacing X, by V after integrating gives

_CAOd(an)_ . 1_XA
fa™ gy dt = kCa=kCao 1+ e,X,

—m(r-ﬁv)=mav=vrvh

EaVi

» Yields a straight line of slope k.

|

AV
eaVo

In (1 _




Integral Method of Analysis
varying-volume reactor

» Second-Order Reactions

2A — products
» Rate Is given by

1-X, \?
- =CA°d1“V=kCi=kC%\o( A)

A gy dt 1+ e X4
» Replacing X, by V —4
5|2
|
(1+e4) AV AV =
- = kCpayt £
V08A — AV * ea In{1 VOSA A9 ' f: Eq. 73
=
&
é ;% Slope = kCy,

t

Y



CORRECT AND INCORRECT E VALUES

» Batch reactor using pressure units show exactly the same rate at two
different temperatures

Evaluate the activation using these units

atd00K —r, =23p} —r, = [ mol }
m--s
atS00 K —r, =23pi
pa = [atm]

» Using Pressure Units
Change in temperature does not affect the rate of reaction
This meansthat E=0
» Transform p, into C,, then find E

S~ mol — (2.31 m—ﬂl) {PI.-*U a[ml]

m*:s m?-s-atm’
3, 2
Change p,to C,. ALA0K  —Ta = 33;[1“':‘—‘:@ . CY (32.[}5 X 1076 ”:mﬁ‘[’f) (400 K)?
PA=7, RT = C,RT =00025C} where k; =0.0025 ——

P At 500 K 3
ra=23CiRT —rp = 0.0039C% where k, = 0.0039
- ] mol - s

E=7304 —
mol




Calculation of k

k from Individual Data Points

» Kk values calculated for points near the origin (low conversion) will
vary widely

» far from the origin will show little variation

-~ L

Large variation
in slopes

EXPTEsSIon

|

Integrated conversion
Integrated expression
L
|
o
&
5
=
-

Y

k from Pairs of Data Points.

» Kk values can be calculated from successive pairs of experimental
points

» this procedure will give widely different k values from
ey Will De difficult to determine




Calculation of k

» This is a poor method in all respects and is not recommended for testing
linearity of data or for finding mean values of rate constants

A

Slope =k

Integrated expression

Y

Graphical Method of Fitting Data f

» This method the data are plotted and then examined for
deviations from linearity

» When in doubt we should take more data

» probably the safest, soundest, and most reliable method for
evaluating the fit of rate equations




