Chapter 3

Interpretation of Batch Reactor Data

Batch Reactor Data

- Determination of the rate equation is usually a two-step procedure
- First the concentration dependency is found at fixed temperature
- Temperature dependence of the rate constants is found

Batch Reactor Data

- Empirical information is obtained can be divided into two types
 - Batch reactors
 - Flow reactors
 - Batch reactor is simply a container to hold the contents while they react
 - Extent of reaction at various times, and this can be followed in a number of ways

Measure of extent of reaction at various time

By following the concentration of a given component

- By following the change in some physical property of the fluid e.g. electrical conductivity or refractive index
- By following the change in total pressure of a constantvolume system
- By following the change in volume of a constantpressure system

experimental batch reactor is usually operated isothermally and at constant volume

Batch Reactor Data

Relatively simple device adaptable to small-scale

laboratory set-ups

- need little auxiliary equipment or instrumentation
- used whenever possible for obtaining homogeneous kinetic data

Flow reactors

Flow reactor is used primarily in the study of the kinetics of heterogeneous reactions

Analyzing kinetic data

Two procedures for analyzing kinetic data

- Integral methods
- differential methods

Integral methods:

- In the integral method of analysis we guess a particular form of rate equation
- Appropriate integration and mathematical manipulation,
- Predict the plot of a certain concentration function versus time
- Yield a straight line

Integral methods Analysis

- The integral method can only test this or that particular mechanism or rate form
- Integral method is easy to use
- Recommended when testing specific mechanisms
- Relatively simple rate expressions
- When the data are so scattered that we cannot reliably find the derivatives needed in the differential method

suggested that **integral analysis** be attempted **first**, and, if not successful, that the differential method be tried.

Differential methods

Differential method of analysis

- First find (I/V)(dNIdt) from the data
- Test the fit of the rate expression to the data directly and without any integration
- Attempting the fitting procedure.
- The differential method is useful in more complicated situations
- requires more accurate or larger amounts of data
- used to develop or build up a rate equation to fit the data

CONSTANT-VOLUME BATCH REACTOR

• Actually means a *constant-density reaction system*

$$r_i = \frac{1}{V} \frac{dN_i}{dt} = \frac{d(N_i/V)}{dt} = \frac{dC_i}{dt}$$

For ideal gases, where $C = \rho/RT$

Rate of reaction of any component is given by the rate of change of its concentration or partial pressure

$$r_i = \frac{1}{\mathbf{R}T} \frac{dp_i}{dt}$$

Develop the general expression which relates the changing total pressure of the system *I* to the changing concentration or partial pressure of any of the reaction components.

Total Pressure Data Obtained in a Constant-Volume System

General stoichiometric equation

 Each term indicate the number of moles of that component

$$aA + bB + \cdots = rR + sS + \cdots$$
At time 0: $N_{A0} = N_{B0} = N_{B0} = N_{R0} = N_{R0} = N_{S0} = N_{inert}$
At time t: $N_A = N_{A0} - ax$ $N_B = N_{B0} - bx$ $N_R = N_{R0} + rx$ $N_S = N_{S0} + sx$ N_{inert}

Total number of moles present in the system is

$$N_0 = N_{A0} + N_{B0} + \cdots + N_{R0} + N_{S0} + \cdots + N_{inert}$$

• At time *t* it is $N = N_0 + x(r + s + \cdots - a - b - \cdots) = N_0 + x \Delta n$

where

$$\Delta n = r + s + \cdots - a - b - \cdots$$

Total Pressure Data

$$C_{A} = \frac{p_{A}}{\mathbf{R}T} = \frac{N_{A}}{V} = \frac{N_{A0} - ax}{V}$$
$$C_{A} = \frac{N_{A0}}{V} - \frac{a}{\Delta n} \frac{N - N_{0}}{V}$$
$$p_{A} = C_{A}\mathbf{R}T = p_{A0} - \frac{a}{\Delta n} (\pi - \pi_{0})$$

total pressure Π at time *t*, initial partial pressure of A, p_{Ao} , and initial total pressure of the system, Πo

Similarly, for any product R

$$p_{\mathrm{R}} = C_{\mathrm{R}}\mathbf{R}T = p_{\mathrm{R}0} + \frac{r}{\Delta n}\left(\pi - \pi_{0}\right)$$

If the precise stoichiometry is not known, or if more than one stoichiometric equation is needed to represent the reaction, then the "total pressure" procedure cannot be used.

Conversion

- Suppose that N_{Ao} is the initial amount of A in the reactor at time t = 0,
- that N_A is the amount present at time *t*.

$$X_{\rm A} = \frac{N_{\rm A0} - N_{\rm A}}{N_{\rm A0}} = 1 - \frac{N_{\rm A}/V}{N_{\rm A0}/V} = 1 - \frac{C_{\rm A}}{C_{\rm A0}}$$

$$dX_{\rm A} = -\frac{dC_{\rm A}}{C_{\rm A0}}$$

Integral Method of Analysis of Data

- Integral method is especially useful for fitting simple reaction
- Irreversible Unimolecular-Type First-Order Reactions

 $A \rightarrow products$

Test the first-order rate equation

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}$$

Separating and integrating we obtain

$$-\int_{C_{A0}}^{C_{A}} \frac{dC_{A}}{C_{A}} = k \int_{0}^{t} dt \qquad -\ln \frac{C_{A}}{C_{A0}} = kt$$

In terms of conversion

$$\frac{dX_{\rm A}}{dt} = k(1 - X_{\rm A})$$

lintegral method

Rearranging and integrating gives

$$\int_0^{X_A} \frac{dX_A}{1 - X_A} = k \int_0^t dt$$
$$-\ln\left(1 - X_A\right) = kt$$

- Plot of In (1 X_A) or In (C_A/C_{Ao}) vs. t
- Straight line through the origin for this form of rate of equation
- First order but are not amenable to this kind of analysis

$$-\frac{dC_{\rm A}}{dt} = kC_{\rm A}^{0.6}C_{\rm B}^{0.4}$$

Irreversible Bi-molecular type Second-Order Reactions

 $A + B \rightarrow products$

Corresponding rate equation

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = -\frac{dC_{\rm B}}{dt} = kC_{\rm A}C_{\rm B}$$

Amounts of A and B that have reacted at any time t are equal and given by $C_{Ao}X$

$$-r_{A} = C_{A0} \frac{dX_{A}}{dt} = k(C_{A0} - C_{A0}X_{A})(C_{B0} - C_{A0}X_{A})$$

Letting M = C_{B0}/C_{A0}
 $-r_{A} = C_{A0} \frac{dX_{A}}{dt} = kC_{A0}^{2}(1 - X_{A})(M - X_{A})$

$$dt$$
 dt dt dt

On separation and formal integration becomes

$$\int_{0}^{X_{\rm A}} \frac{dX_{\rm A}}{(1-X_{\rm A})(M-X_{\rm A})} = C_{\rm A0}k \int_{0}^{t} dt$$

- Test for the bimolecular mechanism A + B -> R with C_{Ao} # C_{Bo}
- Breakdown into partial fractions, integration, and rearrangement, the final result in a number of different forms

$$\ln \frac{1 - X_{\rm B}}{1 - X_{\rm A}} = \ln \frac{M - X_{\rm A}}{M(1 - X_{\rm A})} = \ln \frac{C_{\rm B}C_{\rm A0}}{C_{\rm B0}C_{\rm A}} = \ln \frac{C_{\rm B}}{MC_{\rm A}}$$
$$= C_{\rm A0}(M - 1)kt = (C_{\rm B0} - C_{\rm A0})kt, \qquad M \neq 1$$

 Linear plot between the concentration function and time for this second-order rate law

Special case

- If C_{Bo} is much larger than C_{Ao} remains approximately constant at all times, and approaches for the first-order reaction
- Second order reaction becomes a pseudo first-order reaction

For the reaction

 $2A \rightarrow \text{products}$

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}^2 = kC_{\rm A0}^2 (1 - X_{\rm A})^2$$
$$\frac{1}{C_{\rm A}} - \frac{1}{C_{\rm A0}} = \frac{1}{C_{\rm A0}} \frac{X_{\rm A}}{1 - X_{\rm A}} = kt$$

Special case

• Test for the bimolecular mechanisms, A + B -> Rwith $C_{Ao} = C_{Bo}$ for \downarrow

The integrated expression depends on the stoichiometry as well as the kinetics

 $A + 2B \rightarrow products$

Second-order reaction

- Second order overall, first order with respect to both A and B $-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}C_{\rm B} = kC_{\rm A0}^2(1 - X_{\rm A})(M - 2X_{\rm A})$
- Integrated form

$$\ln \frac{C_{\rm B}C_{\rm A0}}{C_{\rm B0}C_{\rm A}} = \ln \frac{M - 2X_{\rm A}}{M(1 - X_{\rm A})} = C_{\rm A0}(M - 2)kt, \qquad M \neq 2$$

 Stoichiometric reactant ratio is used the integrated form

$$\frac{1}{C_{\rm A}} - \frac{1}{C_{\rm A0}} = \frac{1}{C_{\rm A0}} \frac{X_{\rm A}}{1 - X_{\rm A}} = 2kt, \qquad M = 2$$

Third-Order Reactions Irreversible Trimolecular-Type Irreversible Trimolecular-Type $A + B + D \rightarrow$ products Rate equation be $-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}C_{\rm B}C_{\rm D}$ In terms of X_A $C_{A0} \frac{dX_A}{dt} = kC_{A0}^3 (1 - X_A) \left(\frac{C_{B0}}{C_{A0}} - X_A\right) \left(\frac{C_{D0}}{C_{A0}} - X_A\right)$ On integration, after manipulation $\frac{1}{(C_{A0} - C_{B0})(C_{A0} - C_{D0})} \ln \frac{C_{A0}}{C_{A}} + \frac{1}{(C_{B0} - C_{D0})(C_{B0} - C_{A0})} \ln \frac{C_{B0}}{C_{B}}$ $+\frac{1}{(C_{D0}-C_{L0})(C_{D0}-C_{D0})}\ln\frac{C_{D0}}{C_{D}}=kt$

Third-Order Reactions Special case

If C_{Do} is much larger than both C_{Ao} and C_{Bo} reaction becomes second order Trimolecular reactions

$$A + 2B \rightarrow R$$
 with $-r_A = -\frac{dC_A}{dt} = kC_A C_B^2$

In terms of conversions the rate of reaction

$$\frac{dX_{\rm A}}{dt} = kC_{\rm A0}^2 (1 - X_{\rm A})(M - 2X_{\rm A})^2 \qquad \text{where } M = C_{\rm B0}/C_{\rm A0}$$

On integration this gives

$$\frac{(2C_{A0} - C_{B0})(C_{B0} - C_{B})}{C_{B0}C_{B}} + \ln\frac{C_{A0}C_{B}}{C_{A}C_{B0}} = (2C_{A0} - C_{B0})^{2}kt, \qquad M \neq 2$$

$$\frac{1}{C_{\rm A}^2} - \frac{1}{C_{\rm A0}^2} = 8kt, \qquad M = 2$$

Third-Order Reactions Special case

• for the reaction $A+B \rightarrow R$

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}C_{\rm B}^2$$

• On integration

$$\frac{(C_{A0} - C_{B0})(C_{B0} - C_{B})}{C_{B0}C_{B}} + \ln \frac{C_{A0}C_{B}}{C_{B0}C_{A}} = (C_{A0} - C_{B0})^{2}kt, \qquad M \neq 1$$

$$\frac{1}{C_{\rm A}^2} - \frac{1}{C_{\rm A0}^2} = 2kt, \qquad M = 1$$

Empirical Rate Equations of nth Order

When the mechanism of reaction is not known

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}^n$$

On separation and integration yields

$$C_{A}^{1-n} - C_{A0}^{1-n} = (n-1)kt, \quad n \neq 1$$

 $C_{A} = 0 \text{ at } t \ge \frac{C_{A0}^{1-n}}{(1-n)k}$

- Reactions with order n > 1 can never go to completion in finite time
- n < 1, reactant concentration will fall to zero and then become negative at some finite time

Zero-Order Reactions

- Rate of reaction is independent of the concentration of materials
- Integrating and noting that C_A can never become negative

$$-r_{A} = -\frac{dC_{A}}{dt} = k$$

$$C_{A0} - C_{A} = C_{A0}X_{A} = kt \text{ for } t < \frac{C_{A0}}{k}$$

$$C_{A} = 0 \text{ for } t \ge \frac{C_{A0}}{k}$$

- Means that the conversion is proportional to time
- As a rule, reactions are of zero order only in certain concentration ranges-higher concentrations

Zero-order reaction

Test for a zero-order reaction

Overall Order of Irreversible Reactions from the Half-Life $t_{1/2}$

Irreversible reaction

 $\alpha A + \beta B + \cdots \rightarrow \text{products}$

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}^a C_{\rm B}^b \cdots$$

Reactants are present in their stoichiometric ratios
Thus, for reactants A and B at any time

 $C_{\rm B}/C_{\rm A} = \beta/\alpha$

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}^a \left(\frac{\beta}{\alpha}C_{\rm A}\right)^b \cdots = k\left(\frac{\beta}{\alpha}\right)^b \cdots C_{\rm A}^{a+b+\cdots}$$
$$-\frac{1}{\tilde{k}} \qquad -\frac{1}{\tilde{k}} C_{\rm A}^a$$

$$-\frac{dC_{\rm A}}{dt} = \tilde{k}C^n_{\rm A}$$

Half-Life of the reaction

Integrating for n # 1

$$C_{\rm A}^{1-n} - C_{\rm A0}^{1-n} = \tilde{k}(n-1)t$$

half-life of the reaction, t_{1/2} as the time needed for the concentration of reactants to drop to one-half the original value

Eq. 33a

Plot of log t_{1/2} vs. log C_{Ao} gives a straight line of slope (1 – n)

Fractional Life Method, t_F

- Concentration of reactant drops to any fractional value $F = C_A / C_{Ao}$ in time, t_F
- Derivation is a direct extension of the half-life method $F^{1-n} 1$

$$t_{\rm F} = \frac{{\rm F}^{1-n} - 1}{k(n-1)} C_{\rm A0}^{1-n}$$

> Plot of log t_F versus log C_{Ao} show straight line

Multiple reactions

- Irreversible Reactions in Parallel
- Decomposition of A by two competing paths,
- Both elementary reactions $A \xrightarrow{k_1} R$

$$A \xrightarrow{k_2} S$$

rates of change of the three components

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = k_1 C_{\rm A} + k_2 C_{\rm A} = (k_1 + k_2) C_{\rm A}$$

$$r_{\rm R} = \frac{dC_{\rm R}}{dt} = k_1 C_{\rm A} \qquad r_{\rm S} = \frac{dC_{\rm S}}{dt} = k_2 C_{\rm A}$$

Evaluation of the rate constants for two competing elementary reaction

- From the stoichiometry, $C_A + C_R + C_s$ is constant
- *k* values are found using all three differential rate equations $C_{A} = (k + k)t$

$$-\ln\frac{C_{\rm A}}{C_{\rm A0}} = (k_1 + k_2)t$$

- Plotted as the slope is $k_1 + k_2$
- Further equation on when integrated gives

Homogeneous Catalyzed Reaction $A \xrightarrow{k_1} R$

$$-\left(\frac{dC_{\rm A}}{dt}\right)_1 = k_1 C_{\rm A} \qquad -\left(\frac{dC_{\rm A}}{dt}\right)_2 = k_2 C_{\rm A} C_{\rm C}$$

Overall rate of disappearance of reactant A is

$$-\frac{dC_{\rm A}}{dt} = k_1 C_{\rm A} + k_2 C_{\rm A} C_{\rm C} = (k_1 + k_2 C_{\rm C}) C_{\rm A}$$

On integration

$$-\ln \frac{C_{\rm A}}{C_{\rm A0}} = -\ln (1 - X_{\rm A}) = (k_1 + k_2 C_{\rm C})t = k_{\rm observed} t$$

Homogeneous Catalyzed Reaction

- Plot the k observed value against the Cc
- Making a series of runs with different catalyst concentrations to find k₁ and k₂

Special case competing reactions

First-order reactions of the type

concentration-time curves

Autocatalytic Reactions

Products of reaction acts as a catalyst

$$\mathbf{A} + \mathbf{R} \rightarrow \mathbf{R} + \mathbf{R}$$

Rate equation

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}C_{\rm R}$$

Total number of moles of A and R remain unchanged

$$C_0 = C_A + C_R = C_{A0} + C_{R0} = \text{constant}$$

Rate equation becomes

$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}(C_0 - C_{\rm A})$$

Rearranging and breaking into partial fractions

$$\frac{dC_{\mathrm{A}}}{C_{\mathrm{A}}(C_{0}-C_{\mathrm{A}})} = -\frac{1}{C_{0}}\left(\frac{dC_{\mathrm{A}}}{C_{\mathrm{A}}} + \frac{dC_{\mathrm{A}}}{C_{0}-C_{\mathrm{A}}}\right) = k \, dt$$

On integration

$$\ln \frac{C_{A0}(C_0 - C_A)}{C_A(C_0 - C_{A0})} = \ln \frac{C_R/C_{R0}}{C_A/C_{A0}} = C_0 kt = (C_{A0} + C_{R0}) kt$$

Conversion-time and rate-concentration

If M = $C_{RO}/C_{AO} \ln \frac{M + X_A}{M(1 - X_A)} = C_{AO}(M + 1)kt = (C_{AO} + C_{RO})kt$

Test for an autocatalytic reaction

Plot the time and concentration a straight line passing through zero is obtained

Irreversible Reactions in Series

Consecutive unimolecular type first-order reactions
 A → R → S

 Rate equations for the three components

$$r_{A} = \frac{dC_{A}}{dt} = -k_{1}C_{A} \qquad -\ln\frac{C_{A}}{C_{A0}} = k_{1}t \quad \text{or} \quad C_{A} = C_{A0}e^{-k_{1}t}$$

$$r_{R} = \frac{dC_{R}}{dt} = k_{1}C_{A} - k_{2}C_{R} \qquad \frac{dC_{R}}{dt} + k_{2}C_{R} = k_{1}C_{A0}e^{-k_{1}t}$$

$$r_{S} = \frac{dC_{S}}{dt} = k_{2}C_{R} \qquad C_{R} = C_{A0}k_{1}\left(\frac{e^{-k_{1}t}}{k_{2} - k_{1}} + \frac{e^{-k_{2}t}}{k_{1} - k_{2}}\right)$$

$$C_{A0} = C_{A} + C_{R} + C_{S}$$

$$C_{S} = C_{A0}\left(1 + \frac{k_{2}}{k_{1} - k_{2}}e^{-k_{1}t} + \frac{k_{1}}{k_{2} - k_{1}}e^{-k_{2}t}\right)$$

If k_2 is much larger than k_1 $C_s = C_{A0}(1 - e^{-k_1 t}), \quad k_2 \gg k_1$ If k_1 is much larger than k_2 $C_s = C_{A0}(1 - e^{-k_2 t}), \quad k_1 \gg k_2$

Reactions in Series

- Values of k_1 and k_2 also govern the location and maximum concentration of R
- Setting $dC_R ldt = 0$ $t_{max} = \frac{1}{k_{log mean}} = \frac{\ln (k_2/k_1)}{k_2 - k_1}$
- Maximum concentration of R is found by

First-Order Reversible Reactions

Unimolecular-type reaction

$$A \xleftarrow{k_1}{k_2} R, \qquad K_C = K = equilibrium constant$$

$$\frac{dC_{\rm R}}{dt} = -\frac{dC_{\rm A}}{dt} = C_{\rm A0}\frac{dX_{\rm A}}{dt} = k_1C_{\rm A} - k_2C_{\rm R}$$

• Concentration ratio $M = C_{Ro}/C_{Ao}$

$$= k_1 (C_{A0} - C_{A0} X_A) - k_2 (M C_{A0} + C_{A0} X_A)$$

• At equilibrium $dC_A/dt = 0$

$$K_C = \frac{C_{\text{R}e}}{C_{\text{A}e}} = \frac{M + X_{\text{A}e}}{1 - X_{\text{A}e}}$$

The equilibrium constant

$$K_C = \frac{k_1}{k_2}$$

• Combining equations, in terms of the equilibrium conversion $\frac{dX_{\rm A}}{dX_{\rm A}} = \frac{k_1(M+1)}{(X_{\rm A}-X_{\rm A})}$

$$\frac{dMA}{dt} = \frac{N_1(M+1)}{M+X_{Ae}} \left(X_{Ae} - X_A \right)$$

As a pseudo first-order irreversible reaction

$$-\ln\left(1 - \frac{X_{A}}{X_{Ae}}\right) = -\ln\frac{C_{A} - C_{Ae}}{C_{A0} - C_{Ae}} = \frac{M+1}{M+X_{Ae}}k_{1}k_{Ae}$$

- A plot of $-\ln(1 X_A/X_{Ae})$ vs . T
- Special case of the reversible reaction in which

$$C_A$$
, = 0, or X_{Ae} = 1, or $Kc = \infty$.

Second-Order Reversible Reactions Bimolecular-type second-order reactions

Restrictions that $C_{Ao} = C_{Bo}$, and $C_{Ro} = C_{So} = 0$

Integrated rate equations for A and B are all identical $X_{A} = (2X_{A} - 1)X_{A} = (1 - 1)X_{A}$

$$n\frac{X_{A_e} - (2X_{Ae} - 1)X_A}{X_{Ae} - X_A} = 2k_1\left(\frac{1}{X_{Ae}} - 1\right)C_{A0}k$$

Reversible Reactions

- A plot can then be used to test the adequacy of these kinetic
- orders other than one or two, integration of the rate equation becomes cumbersome

Rate equation is best done by the differential method

Reactions of Shifting Order

Data are well fitted by one reaction order at high concentrations but another order at low concentrations

$$\mathbf{A} \rightarrow \mathbf{R}$$
 $-r_{\mathbf{A}} = -\frac{dC_{\mathbf{A}}}{dt} = \frac{k_1 C_{\mathbf{A}}}{1 + k_2 C_{\mathbf{A}}}$

- At high C_A the reaction is of zero order with rate constant k₁/k₂ (or k₂C_A >>1)
- At low C_A-the reaction is of first order with rate constant
 k₁ (or k₂C_A <<1)
- Integral method, separate variables and integrate

$$\ln \frac{C_{A0}}{C_{A}} + k_2 \left(C_{A0} - C_{A} \right) = k_1 t$$

Reactions of Shifting Order

To linearize, rearrange

$$\frac{C_{A0} - C_{A}}{\ln (C_{A0}/C_{A})} = -\frac{1}{k_{2}} + \frac{k_{1}}{k_{2}} \left(\frac{t}{\ln (C_{A0}/C_{A})}\right)$$

Two ways to test this rate

Find A Rate Equation Using The Integral Method

$A \rightarrow products$

Column 1	Column 2	Column 3	Column 4	
Time t, s	Concentration C_A , mol/liter	$\ln \frac{C_{A0}}{C_A}$	$\frac{1}{C_{A}}$	
0	$C_{A0} = 10$	$\ln 10/10 = 0$	0.1	
20	8	$\ln 10/8 = 0.2231$	0.125	
40	6	0.511	0.167	
60	5	0.6931	0.200	
120	3	1.204	0.333	
180	2	1.609	0.500	
300	1	2.303	1.000	
Reported data		Calculated		

Solution

Guess First-Order Kinetics

This means that InC_{Ao}/C_A vs *t* should give a straight line

Guess Second-Order Kinetics

 $1/C_A$ vs. *t* should give a straight line

Find a Rate Equation

Guess nth-Order Kinetics fractional life method with F = 80%

Take logarithms $t_{\rm F} = \frac{(0.8)^{1-n} - 1}{k(n-1)} C_{\rm A0}^{1-n}$

First accurately plot the C, vs. t data
Draw a smooth curve to represent the data

Find A Rate Equation

Choose $C_{Ao} = 10$, 5, and 2 From the curve Next, plot $\log t_F$ vs. $\log C_{Ao}$

Find A Rate Equation

• Pick $C_{Ao} = 10$, for which $t_F = 18.5$ s

$$18.5 = \frac{(0.8)^{1-1.4} - 1}{k(1.4 - 1)} \, 10^{1-1.4}$$

Rate equation that represents this reaction is

$$-r_{\rm A} = \left(0.005 \,\frac{\rm liter^{0.4}}{\rm mol^{0.4} \cdot s}\right) C_{\rm A}^{1.4}, \qquad \frac{\rm mol}{\rm liter \cdot s}$$

Differential Method of Analysis

- Plot the C_A vs. t data
- Draw a smooth curve
- Determine the slope of this curve
- Slopes $dC_A/dt = r_A$ are the rates of reaction

Differential Method of Analysis

Testing nth order form -r_A = kCⁿ_A
Taking logarithms

Fit the M-M equation

Set of C_A vs *t* data to which we want to fit the M-M equation

Rate Equation To Fit The Differential Method

Column 1		Column 2	Column 3	Column 4	Column 5	
	Time t, s	Concentration C_A , mol/liter	Slope, from Fig. E3.2a (dC_A/dt)	$\log_{10}\left(-dC_{\rm A}/dt\right)$	$\log_{10} C_{\rm A}$	
	0	10	(10 - 0)/(0 - 75) = -0.1333	-0.875	1.000	
	20	8	(10 - 0)/(-3 - 94) = -0.1031	-0.987	0.903	
	40	6	(10 - 0)/(-21 - 131) = -0.0658	-1.182	0.778	
	60	5	(8 - 0)/(-15 - 180) = -0.0410	-1.387	0.699	
	120	3	(6 - 0)/(-10 - 252) = -0.0238	-1.623	0.477	
	180	2	(4-1)/(24-255) = -0.0108	-1.967	0.301	
	300	1	(3-1)/(-10-300) = -0.0065	-2.187	0.000	
-0. -1. -1. -1. -1. -1. -1. -1. -1	8 Slope = n = - $0 -$ $2 -$ $4 -$ $6 -$	0.875 - (-2.305) 1 - 0 0	$\frac{\log_{10}\left(-\frac{dC_{A}}{dt}\right) = \log_{10}k + n\log_{10}C_{A}}{y}$ intercept			
$ \begin{array}{c} \underline{\circ} & -1.8 \\ -2.0 \\ -2.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 00_{10} C_{A} \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 0 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 0 \\ 0.2 \\ $		$\frac{ }{0.6 \ 0.8 \ 1}$ $= \log_{10} C_{A}$	$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = \left(-\frac{dC_{\rm A}}{dt} - \frac{dC_{\rm A}}{dt} \right)$	$0.005 \frac{\text{liter}^{0.43}}{\text{mol}^{0.43} \cdot \text{s}}$	$C_{\rm A}^{1.43}, \frac{1}{\rm lit}$	

VARYING-VOLUME BATCH REACTOR

- This kind of reactor can be used for isothermal constant pressure operations
- V_o = initial volume of the reactor
- V = the volume at time *t*.

$$V = V_0 (1 + \varepsilon_A X_A)$$
$$X_A = \frac{V - V_0}{V_0 \varepsilon_A} \qquad dX_A = \frac{dV}{V_0 \varepsilon_A}$$

 $\blacktriangleright \epsilon_A$ is the fractional change in volume of the system between no conversion and complete conversion of reactant A.

$$\varepsilon_{A} = \frac{V_{X_{A}=1} - V_{X_{A}=0}}{V_{X_{A}=0}} \qquad \qquad A \rightarrow 4R$$
$$\varepsilon_{A} = \frac{4-1}{1} = 3$$

With 50% inerts present at the start, $\varepsilon_A = \frac{5-2}{2} = 1.5$

Volume Change with Reaction

• Increase in the total number of moles per mole of A reacted $\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$

$$N_T = N_{T0} + \delta N_{A0} X \qquad \qquad \frac{N_T}{N_{T0}} = 1 + \frac{N_{A0}}{N_{T0}} \delta X = 1 + \delta y_{A0} X$$

 $\varepsilon = \frac{\text{change in total number of moles for complete conversion}}{\text{total number of moles fed to the reactor}}$

$$\varepsilon = \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) \frac{N_{A0}}{N_{T0}} = y_{A0}\delta$$

$$V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) (1 + \varepsilon X)$$
compressibility factor will not change
$$V = V_0 \left(\frac{P_0}{P}\right) (1 + \varepsilon X) \frac{T}{T_0}$$

Volume Change with Reaction

 A mixture of 28% SO₂ and 72% air is charged to a flow reactor in which SO₂ is oxidized.

 $2SO_2 + O_2 \longrightarrow 2SO_3$

$$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$$

$$\varepsilon = y_{A0} \,\delta = (0.28)(1 - 1 - \frac{1}{2}) = -0.14$$

VARYING-VOLUME BATCH REACTOR

$$N_{A} = N_{A0}(1 - X_{A})$$

$$C_{A} = \frac{N_{A}}{V} = \frac{N_{A0}(1 - X_{A})}{V_{0}(1 + \varepsilon_{A}X_{A})}$$

$$= C_{A0} \frac{1 - X_{A}}{1 + \varepsilon_{A}X_{A}} \qquad \frac{C_{A}}{C_{A0}} = \frac{1 - X_{A}}{1 + \varepsilon_{A}X_{A}} \qquad X_{A} = \frac{1 - C_{A}/C_{A0}}{1 + \varepsilon_{A}C_{A}/C_{A0}}$$

The rate of reaction

$$-r_{\rm A} = -\frac{1}{V} \frac{dN_{\rm A}}{dt}$$
$$-r_{\rm A} = \frac{C_{\rm A0}}{(1+\varepsilon_{\rm A}X_{\rm A})} \frac{dX_{\rm A}}{dt} \qquad \longrightarrow \quad -r_{\rm A} = \frac{C_{\rm A0}}{V\varepsilon_{\rm A}} \cdot \frac{dV}{dt} = \frac{C_{\rm A0}}{\varepsilon_{\rm A}} \cdot \frac{d(\ln V)}{dt}$$

Differential Method of Analysis

Replace $\frac{dC_A}{dt}$ with $\frac{C_{A0}}{V\varepsilon_A}\frac{dV}{dt}$ or $\frac{C_{A0}}{\varepsilon_A}\frac{d(\ln V)}{dt}$ This means plot (In V) vs. *t* and take slopes

Integral Method of Analysis Zero–Order Reactions

Iogarithm of the fractional change in volume versus time yields a straight line of slope ke_A/C_{A0}

Integral Method of Analysis varying-volume reactor

First-Order Reactions

• Replacing X_A by V after integrating gives

$$-r_{\rm A} = \frac{C_{\rm A0}}{\varepsilon_{\rm A}} \frac{d(\ln V)}{dt} = kC_{\rm A} = kC_{\rm A0} \left(\frac{1 - X_{\rm A}}{1 + \varepsilon_{\rm A} X_{\rm A}}\right)$$

$$-\ln\left(1-\frac{\Delta V}{\varepsilon_{\rm A}V_0}\right) = kt, \,\Delta V = V - V_0$$

Yields a straight line of slope k.

Integral Method of Analysis varying-volume reactor

Second-Order Reactions

 $2A \rightarrow products$

Rate is given by

$$-r_{\rm A} = \frac{C_{\rm A0}}{\varepsilon_{\rm A}} \frac{d\ln V}{dt} = kC_{\rm A}^2 = kC_{\rm A0}^2 \left(\frac{1-X_{\rm A}}{1+\varepsilon_{\rm A}}\right)^2$$

$$\begin{array}{c} \quad \text{Replacing } X_{A} \text{ by } V \\ \hline \\ \frac{(1+\varepsilon_{A}) \Delta V}{V_{0}\varepsilon_{A} - \Delta V} + \varepsilon_{A} \ln \left(1 - \frac{\Delta V}{V_{0}\varepsilon_{A}}\right) = kC_{A0}t \\ \hline \\ \\ \end{array}$$

$$\frac{A\nabla}{V} - \frac{1}{V} = \frac{\nabla}{V} + \frac{A\nabla}{V} + \frac{V}{V} + \frac{$$

CORRECT AND INCORRECT E VALUES

 Batch reactor using pressure units show exactly the same rate at two different temperatures

Evaluate the activation using these units

at 400 K
$$-r_{A} = 2.3 p_{A}^{2}$$

at 500 K $-r_{A} = 2.3 p_{A}^{2}$
 $p_{A} = [atm]$

Using Pressure Units

Change in temperature does not affect the rate of reaction This means that $\mathbf{E} = 0$

Transform p_A into C_A, then find E

$$-r_{A}, \frac{\text{mol}}{\text{m}^{3} \cdot \text{s}} = \left(2.3, \frac{\text{mol}}{\text{m}^{3} \cdot \text{s} \cdot \text{atm}^{2}}\right) (p_{A}^{2}, \text{atm}^{2})$$
Change p_{A} to C_{A} . At 400 K $-r_{A1} = 2.3 \frac{\text{mol}}{\text{m}^{3} \cdot \text{s} \cdot \text{atm}^{2}} \cdot C_{A}^{2} \left(82.06 \times 10^{-6} \frac{\text{m}^{3} \cdot \text{atm}}{\text{mol} \cdot \text{K}}\right)^{2} (400 \text{ K})^{2}$
 $p_{A} = \frac{n_{A}}{V} \mathbf{R}T = C_{A} \mathbf{R}T$ $= 0.0025 C_{A}^{2}$ where $k_{1} = 0.0025 \frac{\text{m}^{3}}{\text{mol} \cdot \text{s}}$
 $-r_{A} = 2.3 C_{A}^{2} \mathbf{R}^{2} T^{2}$ At 500 K $-r_{A2} = 0.0039 C_{A}^{2}$ where $k_{2} = 0.0039 \frac{\text{m}^{3}}{\text{mol} \cdot \text{s}}$
 $\mathbf{E} = 7394 \frac{\text{J}}{\text{mol}}$

Calculation of k

k from Individual Data Points

- k values calculated for points near the origin (low conversion) will vary widely
- far from the origin will show little variation

k from Pairs of Data Points.

- k values can be calculated from successive pairs of experimental points
 - this procedure will give widely different k values from
 - which Know will be difficult to determine

Calculation of k

This is a poor method in all respects and is not recommended for testing linearity of data or for finding mean values of rate constants

Graphical Method of Fitting Data

- This method the data are plotted and then examined for deviations from linearity
- When in doubt we should take more data
- probably the safest, soundest, and most reliable method for evaluating the fit of rate equations