Chapter 5

Ideal Reactors for a Single Reaction

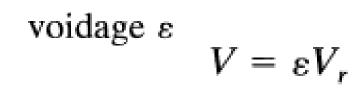
Single Ideal reactor Homogeneous reactions

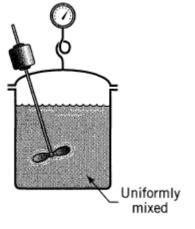
- Batch reactor : Unsteady state operation
- ➤ Plug flow reactor : Slug flow, Piston flow,

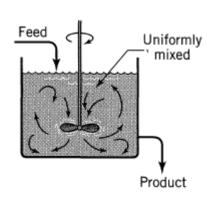
 Ideal tubular unmixed flow reactor
- No element of fluid overtaking or mixing with any other element ahead or behind
- There may be lateral mixing, no mixing along the flow path
 - Constant flow stirred tank reactor (CFSTR):
 Mixed reactor

Single Ideal reactor

- Internal volume of reactor, V_r
- While V the volume of reacting fluid







Plug flow reactor, PFR

Batch reactor

Mixed flow reactor, MFR

- Composition is uniform throughout at any instant of time,
- No fluid enters or leaves the reaction mixture during reaction

$$+ \begin{pmatrix} \text{rate of loss of reactant A} \\ \text{within reactor due to} \\ \text{chemical reaction} \end{pmatrix} = - \begin{pmatrix} \text{rate of accumulation} \\ \text{of reactant A} \\ \text{within the reactor} \end{pmatrix}$$

unit

accumulation of A, moles/time
$$\frac{dN_{A}}{dt} = \frac{d[N_{A0}(1 - X_{A})]}{dt} = -N_{A0}\frac{dX_{A}}{dt}$$

$$(-r_{A})V = N_{A0} \frac{dX_{A}}{dt}$$
$$t = N_{A0} \int_{0}^{X_{A}} \frac{dX_{A}}{(-r_{A})V}$$

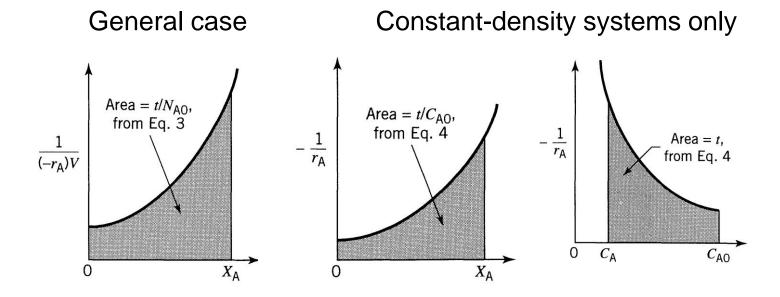
If the density of the fluid remains constant

$$t = C_{A0} \int_0^{X_A} \frac{dX_A}{-r_A} = -\int_{C_{A0}}^{C_A} \frac{dC_A}{-r_A} \qquad \text{for } \varepsilon_A = 0$$

Volume of reacting mixture changes proportionally with conversion

$$t = N_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)V_0(1 + \varepsilon_A X_A)}$$
$$= C_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)}$$

Graphical representation of the performance equations for isothermal



Space-Time and Space-Velocity

Proper performance measures of flow reactors

Space-time:

$$\tau = \frac{1}{s} = \left(\begin{array}{c} \text{time required to process one} \\ \text{reactor volume of feed measured} \\ \text{at specified conditions} \end{array}\right) = [\text{time}]$$

Space -velocity

$$s = \frac{1}{\tau} = \begin{pmatrix} \text{number of reactor volumes of feed at specified conditions which can be treated in unit time} \end{pmatrix} = [\text{time}^{-1}]$$

$$\tau = \frac{1}{s} = \frac{C_{A0}V}{F_{A0}} = \frac{\left(\frac{\text{moles A entering}}{\text{volume of feed}}\right) \text{(volume of reactor)}}{\left(\frac{\text{moles A entering}}{\text{time}}\right)}$$

$$= \frac{V}{v_0} = \frac{\text{(reactor volume)}}{\text{(volumetric feed rate)}}$$

The space-velocity and space-time based on feed at actual entering conditions

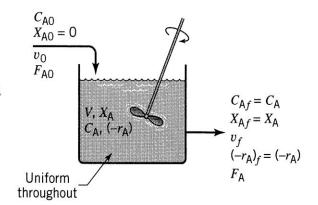
STEADY-STATE MIXED FLOW REACTOR

- Composition is uniform throughout reactor
- By selecting reactant A for consideration

input = output + disappearance by reaction + accumulation if $F_{A0} = v_0 C_{A0}$ is the molar feed rate of component A

input of A, moles/time =
$$F_{A0}(1 - X_{A0}) = F_{A0}$$

output of A, moles/time = $F_{A} = F_{A0}(1 - X_{A})$



disappearance of A by reaction, moles/time
$$(-r_{\rm A})V = \left(\frac{\text{moles A reacting}}{(\text{time})(\text{volume of fluid})}\right) \left(\begin{array}{c} \text{volume of reactor} \\ \text{reactor} \end{array}\right)$$
$$F_{\rm A0}X_{\rm A} = (-r_{\rm A})V$$

On rearrangement:

$$\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \frac{\Delta X_{A}}{-r_{A}} = \frac{X_{A}}{-r_{A}}$$

$$\tau = \frac{1}{s} = \frac{V}{v_{0}} = \frac{VC_{A0}}{F_{A0}} = \frac{C_{A0}X_{A}}{-r_{A}}$$

Steady-State Mixed Flow Reactor

- Where X_A and r_A are measured at exit stream conditions,
- Which are the same as the conditions within the reactor

If the feed enters the reactor, subscript 0 Partially converted, subscript i, leaves at conditions given by subscript *f*

$$\frac{V}{F_{A0}} = \frac{\Delta X_{A}}{(-r_{A})_{f}} = \frac{X_{Af} - X_{Ai}}{(-r_{A})_{f}} \qquad \tau = \frac{VC_{A0}}{F_{A0}} = \frac{C_{A0}(X_{Af} - X_{Ai})}{(-r_{A})_{f}}$$

Constant-density systems $X_A = 1 - C_A/C_{Ao}$

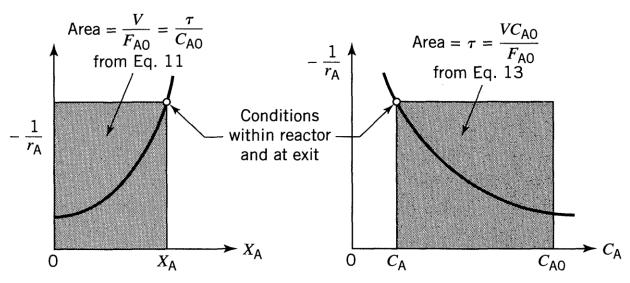
$$\frac{V}{F_{A0}} = \frac{X_{A}}{-r_{A}} = \frac{C_{A0} - C_{A}}{C_{A0}(-r_{A})}$$

$$\tau = \frac{V}{v} = \frac{C_{A0}X_{A}}{-r_{A}} = \frac{C_{A0} - C_{A}}{-r_{A}}$$

Mixed flow reactor

General case

Constant-density systems only



First-order Reaction:

$$k\tau = \frac{X_A}{1 - X_A} = \frac{C_{A0} - C_A}{C_A}$$
 for $\varepsilon_A = 0$

For linear expansion

$$V = V_0 (1 + \varepsilon_{\mathsf{A}} X_{\mathsf{A}})$$

ar expansion
$$C_A = \frac{C_A}{C_{A0}} = \frac{1 - X_A}{1 + \varepsilon_A X_A}$$

Mixed flow reactor

First-order reaction the performance expression

$$k\tau = \frac{X_{\rm A}(1 + \varepsilon_{\rm A}X_{\rm A})}{1 - X_{\rm A}}$$
 for any $\varepsilon_{\rm A}$

Second-order reaction, A -> products,

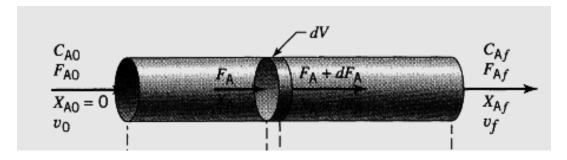
$$-r_{\rm A}=kC_{\rm A}^2$$
, $\varepsilon_{\rm A}=0$,

The performance equation

$$k\tau = \frac{C_{A0} - C_{A}}{C_{A}^{2}}$$
 or $C_{A} = \frac{-1 + \sqrt{1 + 4k\tau C_{A0}}}{2k\tau}$

STEADY-STATE PLUG FLOW REACTOR

Composition of the fluid varies from point to point along a flow path



 Material balance for a reaction component made for a differential element of volume dV

input = output + disappearance by reaction + accumulation

Input of **A**, moles/time = F_A Output of **A**, moles/time = F_A + dF_A Disappearance of **A** by reaction, moles/time = $(-r_A)dV$

PLUG FLOW REACTOR

Disappearance of A by reaction, moles/time = (-r_A)dV

$$= \left(\frac{\text{moles A reacting})}{(\text{time})(\text{volume of fluid})}\right) \left(\begin{array}{c} \text{volume of } \\ \text{element} \end{array}\right)$$

$$F_{A} = (F_{A} + dF_{A}) + (-r_{A})dV$$

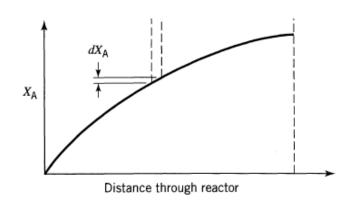
$$dF_{A} = d[F_{A0}(1 - X_{A})] = -F_{A0}dX_{A}$$

$$F_{A0}dX_{A} = (-r_{A})dV$$

$$\int_{0}^{V} \frac{dV}{F_{A0}} = \int_{0}^{X_{Af}} \frac{dX_{A}}{-r_{A}}$$

$$\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \int_{0}^{X_{Af}} \frac{dX_{A}}{-r_{A}}$$

$$\tau = \frac{V}{v_{0}} = \frac{VC_{A0}}{F_{A0}} = C_{A0} \int_{0}^{X_{Af}} \frac{dX_{A}}{-r_{A}}$$



PLUG FLOW REACTOR

Difference in plug flow r_A varies, whereas in mixed flow r_A is constant

$$\frac{V}{F_{A0}} = \int_{X_{Ai}}^{X_{Af}} \frac{dX_{A}}{-r_{A}}$$

Case of constant-density systems

$$\tau = C_{A0} \int_{X_{Ai}}^{X_{Af}} \frac{dX_A}{-r_A}$$

$$\varepsilon_A = 0$$

$$X_A = 1 - \frac{C_A}{C_{A0}} \text{ and } dX_A = -\frac{dC_A}{C_{A0}}$$

Performance equations for plug flow reactors

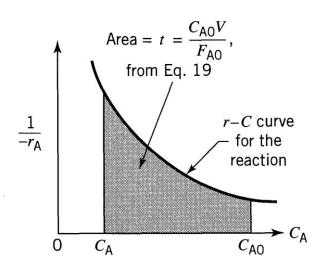
$$\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \int_{0}^{X_{Af}} \frac{dX_{A}}{-r_{A}} = -\frac{1}{C_{A0}} \int_{C_{A0}}^{C_{Af}} \frac{dC_{A}}{-r_{A}}$$

$$\tau = \frac{V}{v_{0}} = C_{A0} \int_{0}^{X_{Af}} \frac{dX_{A}}{-r_{A}} = -\int_{C_{A0}}^{C_{Af}} \frac{dC_{A}}{-r_{A}}$$

General case

Area = $\frac{V}{F_{AO}} = \frac{t}{C_{AO}}$, from Eq. 17 $\frac{1}{-r_A}$ X_A

Constant-density systems only



Simpler integrated forms for plug flow

Zero-order homogeneous reaction:

$$k\tau = \frac{kC_{A0}V}{F_{A0}} = C_{A0}X_{A}$$

First-order irreversible reaction:

$$k\tau = -(1 + \varepsilon_{A}) \ln (1 - X_{A}) - \varepsilon_{A} X_{A}$$

First-order reversible reaction

$$A \rightleftharpoons rR$$
, $C_{R0}/C_{A0} = M$

$$-r_{A} = k_1 C_{A} - k_2 C_{R}$$

Equilibrium conversion X_{Ae}

$$k_1 \tau = \frac{M + rX_{Ae}}{M + r} \left[-(1 + \varepsilon_A X_{Ae}) \ln \left(1 - \frac{X_A}{X_{Ae}} \right) - \varepsilon_A X_A \right]$$

Second-order irreversible reaction

Second-order irreversible reaction

A + B -> Products with equimolar feed or

2A -> Products

constant ε_A

$$C_{A0}k\tau = 2\varepsilon_{A}(1+\varepsilon_{A})\ln(1-X_{A}) + \varepsilon_{A}^{2}X_{A} + (\varepsilon_{A}+1)^{2}\frac{X_{A}}{1-X_{A}}$$

Holding Time and Space Time

$$\tau = \begin{pmatrix} \text{time needed to} \\ \text{treat one reactor} \\ \text{volume of feed} \end{pmatrix} = \frac{V}{v_0} = \frac{C_{A0}V}{F_{A0}}$$

$$\bar{t} = \begin{pmatrix} \text{mean residence time} \\ \text{of flowing material} \\ \text{in the reactor} \end{pmatrix}$$

$$= C_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)}$$

constant density systems

(all liquids and constant density gases)

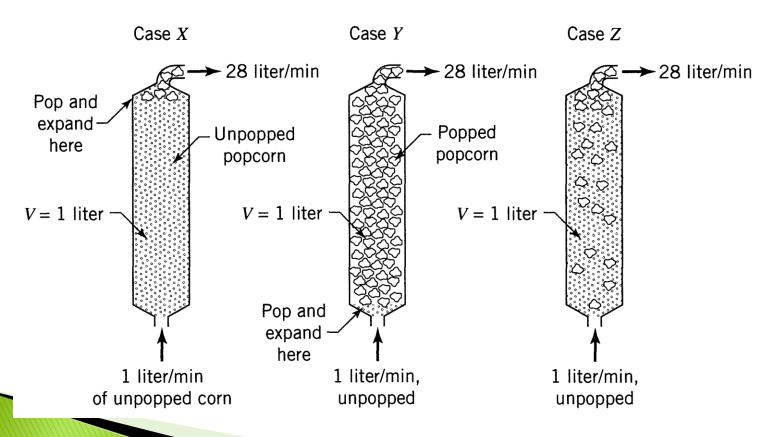
$$\tau = \bar{t} = \frac{V}{v}$$

For changing density systems $\bar{t} \neq \tau$ and $\bar{t} \neq V/v_0$

$$\bar{t} \neq \tau$$
 and $\bar{t} \neq V/v_0$

Holding Time and Space Time

- Consider three cases of the steady-flow popcorn
- Takes in 1 liter/min of raw corn and produces 28 liters/min Consider three cases, called X, Y, and Z,



Holding Time and Space Time

- Case X: All the popping occurs at the back end of the reactor
- Case Y : All the popping occurs at the front end of the reactor
- Case Z : The popping occurs somewhere between entrance and exit $\tau_{\rm X} = \tau_{\rm Y} = \tau_{\rm Z} = \frac{V}{v_{\rm o}} = \frac{1 \, {\rm liter}}{1 \, {\rm liter/min}} = 1 \, {\rm min}$

Irrespective of where the popping occurs

Residence time in the three cases is very different

$$\bar{t}_{X} = \frac{1 \text{ liter}}{1 \text{ liter/min}} = 1 \text{ min}$$

$$\bar{t}_{\rm Y} = \frac{1 \, \text{liter}}{28 \, \text{liter/min}} \cong 2 \, \text{sec}$$

 \bar{t}_{7} is somewhere between 2 and 60 s

Value of *i* depends on what happens in the reactor, while to bindependent of what happens in the reactor

Performance Equations for *n*th-order Kinetics and $\varepsilon_A = 0$

Table 5.1 Performance Equations for *n*th-order Kinetics and $\varepsilon_A = 0$

	Plug Flow or Batch	Mixed Flow		
$n = 0$ $-r_{A} = k$	$\frac{k\tau}{C_{A0}} = \frac{C_{A0} - C_{A}}{C_{A0}} = X_{A} $ (20)	$\frac{k\tau}{C_{A0}} = \frac{C_{A0} - C_{A}}{C_{A0}} = X_{A}$		
$n = 1$ $-r_{A} = kC_{A}$	$k\tau = \ln\frac{C_{A0}}{C_{A}} = \ln\frac{1}{1 - X_{A}}$ (3.12)	$k\tau = \frac{C_{A0} - C_{A}}{C_{A}} = \frac{X_{A}}{1 - X_{A}}$ (14a)		
$n = 2$ $-r_{A} = kC_{A}^{2}$	$k\tau C_{A0} = \frac{C_{A0} - C_{A}}{C_{A}} = \frac{X_{A}}{1 - X_{A}}$ (3.16)	$k\tau = \frac{(C_{A0} - C_A)}{C_A^2} = \frac{X_A}{C_{A0}(1 - X_A)^2}$ (15)		
$ \begin{array}{l} \text{any } n \\ -r_{\mathbf{A}} = kC_{\mathbf{A}}^{n} \end{array} $	$(n-1)C_{A0}^{n-1}k\tau = \left(\frac{C_{A}}{C_{A0}}\right)^{1-n} - 1 = (1 - X_{A})^{1-n} - 1$ (3.29)	$k\tau = \frac{C_{A0} - C_{A}}{C_{A}^{n}} = \frac{X_{A}}{C_{A0}^{n-1}(1 - X_{A})^{n}}$		
$n = 1$ $A \stackrel{1}{\rightleftharpoons} R$ $C = 0$	$k_1 \tau = \left(1 - \frac{C_{Ae}}{C_{A0}}\right) \ln \left(\frac{C_{A0} - C_{Ae}}{C_A - C_{Ae}}\right) = X_{Ae} \ln \left(\frac{X_{Ae}}{X_{Ae} - X_A}\right)$	$k_1 \tau = \frac{(C_{A0} - C_A)(C_{A0} - C_{Ae})}{C_{A0}(C_A - C_{Ae})} = \frac{X_A X_{Ae}}{X_{Ae} - X_A}$		
$\frac{C_{R0} = 0}{\text{General rate}}$	$\tau = \int_{C_{A}}^{C_{A0}} \frac{dC_{A}}{-r_{A}} = C_{A0} \int_{0}^{X_{Ae}} \frac{dX_{A}}{-r_{A}} $ (19)	$\tau = \frac{C_{A0} - C_{A}}{-r_{Af}} = \frac{C_{A0} X_{A}}{-r_{Af}} $ (13)		

Performance Equations for *n*th-order Kinetics and $\varepsilon_A \neq 0$

Table 5.2 Performance Equations for nth-order Kinetics and $a_{\rm A} \neq 0$

	Plug Flow		Mixed Flow
n = 0 $-r_A = k$	$\frac{k\tau}{C_{AB}} = X_A$	(20)	$\frac{k\tau}{C_{h0}} = X_h$
$n = 1 \\ -r_A = kC_A$	$k\tau = (1 + e_{\rm A}) \ln \frac{1}{1 - X_{\rm A}} - e_{\rm A} X_{\rm A}$	(21)	$k\tau = \frac{X_{A}(1 + \epsilon_{A}X_{A})}{1 - X_{A}}$ (146)
$n = 2$ $-r_A = kC_A^1$	$k\tau C_{AB} = 2e_A(1 + e_A)\ln(1 - X_A) + e_A^2 X_A + (e_A + 1)^2 \cdot \frac{X_A}{1 - X_A}$	(23)	$k\tau C_{A0} = \frac{X_A(1 + \kappa_A X_A)^2}{(1 - X_A)^2}$ (15)
$-r_{\rm A} = kC_{\rm A}^{\rm q}$			$k\tau C_{Ab}^{n-1} = \frac{X_{\rm A}(1+a_{\rm A}X_{\rm A})^n}{(1-X_{\rm A})^n}$
$n = 1$ $A \stackrel{1}{\rightleftharpoons} rR$	$\frac{k\tau}{X_{Ac}} = (1 + \varepsilon_A X_{Ac}) \ln \frac{X_{Ac}}{X_{Ac} - X_A} - \varepsilon_A X_A$	(22)	$\frac{k\tau}{X_{Ac}} = \frac{X_A(1 + e_A X_A)}{X_{Ac} - X_A}$
C _{R0} = 0		(17)	
General expression	$\tau = C_{AB} \int_{0}^{X_{A}} \frac{dX_{A}}{-r_{A}}$	(17)	$\tau = \frac{C_{Al}X_A}{-r_A}$ (11)

Thankyou