FLOW THROUGH ORIFICES
AND MOUTHPIECES




INTRODUCTION

An orifice Is an opening in the wall or base of a vessel through which the
fluid flows. The top edge of the orifice iIs always below the free surface (If the
free surface iIs below the top edge of the orifice, becomes a weir)

A mouthpiece is an attachmnent in the form of a small tube or pipe fixed to
the orifice (the length of pipe extension is usually 2 to 3 times the orifice
diameter) and is used to increase the amount of discharge.

“* Orifices as well as mouthpieces are used to measure the discharge




CLASSIFICATION OF ORIFICES

The orifices are classified as follows

1. According to size:
(1) Small orifice (i1) Large orifice

An orifice is termed small when its dimensions are small compared to the head causing
flow. The velocity does not vary appreciably from top to the bottom edge of the orifice and
IS assumed to be uniform. The orifice is large if the dimensions are comparable with the
head causing flow. The variation in the velocity from the top to the bottom edge is
considerable.

2. According to shape

(i) Circular orifice  (ii) Rectangular orifice (iii) Square orifice  (iv) Triangular orifice.




3. Shape of upstream edge
(1) Sharp-edged orifice (i) Bell-mouthed orifice.

4. According to discharge conditions
(1) Free discharge orifices
(ii) Drowned or submerged orifices (a) Fully submereged  (b) Partially submerged.

Note. An orifice or a mouthpiece is said to be discharging free when it discharges into

atmosphere. It is said to be submerged when it discharges into another liquid.




FLOW THROUGH AN ORIFICE

Fig. 8.1 shows a small circular orifice with sharp edge in the side wall of a tank discharging free into the atmosphere. Let
the orifice be at a depth H below the free surface. As the fluid flows through the orifice, it contracts and attains a
parallel form (i.e., stream lines become parallel) at a distance d/2 from the plane of the orifice. The point at which the
stream lines first become parallel is termed as vena-contracta (the cross-sectional area of the jet at the vena contracta
is less than that of orifice). Beyond this section, the jet diverges and is attracted in the downward direction by gravity.

Considering points 1 and 2 as shown in Fig. 8.1 and applying Bernoulli's theorem, we have:
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But, Pi=P,=P, (P, = atmospheric pressure)

Zl=Zz+H

Further, if the cross-sectional area of the tank is very large, the liquid at point 1 is practically standstill and henceVi=0
Thus,

Equation (8.1) is know as Torricelli’'s theorem.

Note. In the problems of orifices it is covenient to work in terms of gauge pressures.







HYDRAULIC CO-EFFICIENTS

The hydraulic co-efficients (or orifice co-efficients) are enumerated and discussed below :

1. Co-efficient of contraction, C,
2. Co-efficient of velocity, C,

3. Co-efficient of discharge, Cy
4. Co-efficient of resistance, C, .

8.4.1. Co-efficient of Contraction (C,)

The ratio of the area of the jet at vena-contracta to the area of the orifice is known as Co-efficient of contraction. It is
denoted by C,.
Let, a.= Area of jet at vena contracta, and

a = Area of orifice.
Then, .. (8.2)

The value of C, varies slightly with the available head of the liquid, size and shape of the orifice; in practice it varies from

0.613 t0 0.69 but the average value is taken as 0.64.




8.4.2. Co-efficient of Velocity (C,)

The ratio of actual velocity (V) of the jet at vena-contracta to the theoretical velocity (V) is known as Co-efficient of
velocity. It is denoted by C;, and mathematically, C,, is given as:

C, = Actual velocity of jet at vena contracta (V) /Theoretical velocity (Vy)

l.e., C, =V /[ 2gH .. (8.3)

[where, V = Actual velocity, and
H = Head under which the fluid flows out of the orifice

The value of C, varies from 0.95 to 0.99,depending upon the shape of orifice and the head of liquid under which the
flow takes place. For sharp-edged orifices the value of C, is taken as 0.98.




8.4.3. Co-efficient of Discharge

The ratio of actual discharge (Q) through an arifice to the theorerical discharge,(Q;p) is known as Co-efficient of
discharge. It is dinoted by Cj.
Mathematically, C4 = Actual discharge (Q) / Theoretical discharge (Qp )

= Actual area x actual velocity / Theoretical area x theoretical velocity
= Actual area [ Theoretical area x actual velocity x theoretical velocity
oo Cd=CCXCv e (8-4)

The value of €4 varies from 0.62 to 0.65 depending upon size and the shape of the orifice and the head of liquid under
which the flow takes place.

8.4.4. Co-efficient of Resistance (C,.)

The ratio of loss of head (or loss of kinetic energy) in the orifice to the head of water (actual kinetic energy) available at
the exit of the orifice is known as Co-efficient of resistance. It is denoted by C,.

Mathematically, C;- = Loss of head in the orifice / Head of water

The loss of head in the orifice takes place, because the walls of the orifice offer some resistance to the liquid, as it comes
out. While solving numerical problems C;. is generally neglected.




8.4. EXPERIMENTAL DETERMINATION OF HYDRAULIC CO-EFFICIENTS

8.5.1. Determination of Co-efficient of \elocity (C,).

A tank containing water at a constant level, maintained by a costant supply. Let the water flow out of the tank through an
orifice, fitted in one side of the tank. Let the section C—C represents the point of vena contracta. Consider a particle of
water in the jet at P.
Let, x = Horizontal distance travelled by the particle in time 't/

y =Vertical distance between C-Cand P,

V = Actual velocity of the jet at vena-contracta, and

H = Constant water head.

Then, horizontal distance, x =V x t ()

and, vertical distance, y =% gt? ...(ii)

From eqgn. (i), =§

Substituting this value of 't in egn. (ii),we get:




Measuring




V2

But, theoretical velocity, 7V, =

.. Co-efficient of velocity,




8.5.2. Determination of Co-efficient of Discharge (C,)

The water flowing through the orifice under the constant head H is collected in a measuring tank for a known time 't’. The
rise of water level in the measuring tank is noted down. Then actual discharge through the orifice,

Q = Area of measuring tank x rise of water level in the measuring tank / Time (t)

Theoretical discharge, Qp = Area of orifice x \/2gH

Q

8.5.3. Determination of Co-efficient of Contraction (Cc)
The co-efficient of contraction (C,) can be found from the following relation:

C,=C. X C,

C,= =
Cy
8.5.4. Loss of head in Orifice Flow
The loss of head through an orifice can be determined by applying the Bernoulli’s equation
between points O and C (Fig. 8.2).




£
2g

+zc + losses

Substituting the proper values, we get:

V2
O£ 0T = Qb= O +hy
2g

Where, Vis the actual flow velocity through the orifice.

_[8.8(h)]




DISCHARGE THROUGH A LARGE RECTANGULAR ORIFICE

When the available hetad of a liquid is less than 5 times the height of the orifice, the orifice is called a large orifice. In case

of a small orifice, the velocity is considered to be constant in the entire cross- section and the discharge can be calculated

by the formulaQ =C; Xa X ,/2gH. But in case of a large orifice, the velocity of a liquid, flowing through the orifice, varies

with the available head of the liquid and hence Q cannot be calculated as mentioned above (i.e.Q = C; Xa X JZgﬁ).
Consider a large rectangular orifice in one side of the tank discharging water freely into the atmosphere, as
shown in Fig. 8.9.
Let, H; = Height of liquid above the top of the orifice,
H; = Height of liquid above the bottom of the orifice,
b = Breadth of the orifice, and
C4 = Co-efficient of discharge.

Consider an elementary horizontal strip of depth ‘dh’ at depth of *h’ below the water level as shown in Fig. 8.9.




Water level

- Area of the strip=b . dh

Theoretical velocity of water through the strip = \/2gH

= Discharge through the strip, dQ = C; x area of strip x velocity
=Cygxbxdhx,/2gH
=Cy4.b.dh \/2gH

Total discharge through the whole orifice may be found out by integrating the above equation between the limits

Hland H2.




Q=[,”Cq. b.dh J2gH
=Cq. bx /29 ;> VA
3/2
=C4.bx /29 ["3/2]1'712/17!1
=2/3Cy4. by[2g (H'? - H3/?)

8.7 DISCHARGE THROUGH FULLY SUBMEROGED ORIFICE

If an orifice has its whole of the outlet side submerged under liquid so that it discharges a jet of liquid into the liquid of

the same kind then it is known as fully submerged (or drowned) orifice. Consider a fully submerged orifice as shown
in
Let, H; = Height of water (on the upstream side) above the top of the orifice,
H, = Height of water (on the upstream side) above the bottom of the orifice,
H = Difference between the two water levels on either side of the orifice,
b = Width of orifice, and
C4 = Co-efficent of discharge.
~. Area of the orifice =b (H,— H,)







We know that theoretical velocity of water through the orifice = /2gH
~ Actual velocity of water =C,, \/2gH
Since in this case co-efficient of contraction is 1, therefore, taking C,; equal to Cv’ we find that

the actual velocity of water=C; x/2gH

= Discharge through the orifice,

Q = Area of orifice x actual velocity
=b(H,-Hy{)xC4+/2gH
=C; -b(H, - Hy) x[2gH ... (8.10)

Sometimes, depth of submerged orifice (d) is given instead of H; and H,. In such cases, the

discharge,

Q=C; -b-d[2gH




DISCHARGE THROUGH PARTIALLY SUBMERGED ORIFICE

If the outlet side of an orifice is only partly submerged (or drowned) under liquid then it is known as partially

submerged (or drowned) orifice (Fig. 8.11). The upper portion behaves as an orifice discharging free, while

the lower portion behaves as a submerged orifice. The total discharge is determined by computing separately

the discharges through the free and the submerged portions and then adding together the two discharges thus

computed.

Fig. 8.11. Partially submerged orifice.




Discharge through the submerged portion,
Q.= Cd.b.(Hz— H) x \J2gH
and, the discharge through the free portion,
2
Q:==Cq.b .29 (H3? - H}/?

Total discharge Q=0Q:+Q:

= Cd.b.(Hz— H) X\ 2g9gH +§ Cy. b . \/E(HS/Z _ Hf/z

TIME REQUIRED FOR EMPTYING A TANK THROUGH AN ORIFICE AT ITS BOTTOM
Consider a tank, of uniform cross-sectional area, containing some liquid, and having an orifice at its bottom as
shown in Fig. 8.13.




A = Cross-sectional area of the tank,

a = Area of the orifice,

H.= Initial height of liquid,

H.= Final height of liquid

T = Time in seconds, required to bring the level from H.to H-

Let at some instant the height of the liquid be h above the orifice and let the liquid surface fall by an amount
dh after a small interval for time dt.

Then, volume of the liquid that has passed the tank in time dt,
dg=-A-dh (D)

(— ve sign of dh is taken because the value of h decreases when the discharge increases). Also, theoretical
velocity through the orifice, v =,/2gH

=~ Discharge through the orifice in a small interval of time dt,
dq = Co-efficient of discharge x area x theoretical velocity x time.

:Cd.a.w/ZgH.dt

Equating (i) and (ii), we get:
—A-dh=Cs.a../2gH . dt




—Adh - AWK dn

CilaA2eh— Cy.a2g

Timme taken (7) to lower the level from A, to A, 1s calculated by mtegrating the above equation
between the limits A, and A, .

dt =

i.e T = IHz—A(h‘“z)dh_ -4
& By Graafdg Cg.a0gih

= |:hl.-’2 }Hz B
Cy.a42gll/2]ly Ciaif2e
~ 24 ,/H . ,/H
24 —[JFTz—\/EF W, 2) ..(8.13)
C;-a+2g C;:a +28
If the tank 1s to be emptied completely, then A, =0

24 ./ H,;
and, = ...(8.14)

Ca -a@




TIME REQUIRED FOR EMPTYING A HEMISPHERICAL TANK

Consider a hemispherical tank containing some liquid and fitted with an orifice at its bottom as shown in the Fig.
8.19.

Let, R = Radius of the tank,

a = Area of the orifice,

H, = Initial height of the liquid,

H,= Final height of the liquid, and

T =Time in seconds for the liquid to fall from height H; to H,.




Let at any instant of time, the height of liquid over the orifice is h and x be the radius of the liquid surface.

Then, area of liquid surface, A = Tx?

Theoretical velocity of liquid = \/2gH
Let the height of liquid decrease by dh in a small interval of time dT. Then,

Volume of liquid leaving the tank in time dT
= A.dh = px?x dh ..(D)
Also, volume of liquid flowing through the orifice in time dT
= Cq X area of orifice x velocity x dT
=Cu.a.+/2gHxdT ...(ii)
Equating (i) and (ii), we get:
mx?(—dh) = Ca. a/2gHx dT
The negative sign accounts for the decrease in head on the orifice with increase in time interval.
dT = nx?(-dh) / Cs. a/2gH .. (iii)
From , we have:
OU=Rand OS =(R-h)




x=US =v0U?2 — 0S%2=,/R?Z — (R — h)?

=+VR? — R2 — hZ + 2Rh =V2Rh — h?
or x? = (2RH — h?)
Substituting this value of x2 in eqn. (iii), we get:

—1t (2Rh —h?)dh

Cis.a. J2gH

dT =

= (2Rh — h®)h=Y/2dn

~C..a. 29

= 2 J_(ZRhl/Z h3/2)dh

The total time T required to bring the liquid level from H;to H, is obtained by integrating the above equation

between the limits H;to H,.




H
Jg = 7% (2Rh1/2 i h3/2) dh
Hl Cd .a 2g

— T

J' (2Rhl/2 h3/2)dh
.a

h1/2 i h3/z +1 2

Cd" —+1 341

2 ”

H,
hS/Z]
5 H,

—n_[2,
Cda\/——3

i 2 5 5 2’_ S/2 5/2
C;.a [3 ) 5 (H - H, )]

or T

2
T 2g [3_ R ( H,m - H23/2) o= ( H15/2 _ H25/2 )jl

| 1?0: ®mptying the tank completely, H, = 0 and hence,

- U [ﬁ RHY? - 2 H}sm}

Cd.a.\IZg 3 5




TIME REQUIRED FOR EMPTYING A CIRCULAR HORIZONTAL TANK

Consider a circular horizontal tank having an orifice at its bottom and containing some liquid.
Fig. 8.21

SR ff D TR - Rt €

L
V1 A

T = = s o o
1

< L >

Let, R = Radius of the tank,
L = Length of the tank,

H.= Initial height of the liquid,
H.= Final height of the liquid, and

T = Time in seconds for the liquid to fall from height H.to H..




Let at any time, the height of liquid over the orifice is h and it decreases dh in a small interval of time dT. Further,
let x be the radius of liquid surface at this instant. Then,
Volume of liquid leaving the tank in time dT = A.dh ..(1)

= A.dh = UP x L x dh = 2xL.dh (- UP = 2x)

(where, A = surface area)
Velocity of liquid through the orifice =/ 2gH

Volume of liquid flowing through the orifice in time dT=Cs X a X {/2ghx dT .. (if)

Volume of liquid leaving the tank equals the volume of liquid flowing through the orifice.

ie. —2xL.dh=Csxax./2ghx dT

The negative sign accounts for the decrease in head on the orifice with increase in time interval.

—2xL.dh (iii)
Ci.a. J2gh

From Fig. 8.21, we have:

OU=Rand 0OS =(R-h)

dT =




X =US =v0U? — 0S%2=,/R? — (R — h)2=v2Rh — h?

Substituting this value of x in egn. (iii), we get:

dT = —2V2Rh—h? X LXdh —2LV2R-h.dh
C.. a..2gh _Cd.a.,/Zgh

The total time T required to bring the liquid level from height H;to H, can be found out by integrating the above

(Takingvh common)

equation within the limits H;and H,.




2L J(zk h) dh

-2
- j(zk Y2 dh
Cj-a.x2g H,

el x_x[(zR Y2 it 1]
C;.a.4/2g 3

AL
or, T = | @R - H,? - @R -H)*"? |

3C, .a+2g

For emptying the tank completely, /, = 0 and hence,

_ 4L [(2R)3/2 IR _Hl)s/z]

3Cd.a.\/g




8.12. CLASSIFICATION OF MOUTHPIECES

The mouthpieces may be classified as follows :

1. According to the position of the mouthpiece:

(i) Internal mouthpiece. (i) External mouthpiece.

2. According to the shape of the mouthpiece:

(i) Cylindrical mouthpiece. (i) Convergent mouthpiece.
(i) Convergent - divergent mouthpiece.

3. According to nature of discharge:

() Mouthpiece running full. (i) Mouthpiece running free.
% A mouthpiece is said to be running free if the jet of liquid after contraction does not touch the sides of the mouthpiece. But

if the jet after contraction expands and fills the whole mouthpiece it is known as running full.

8.13. DISCHARGE THROUGH AN EXTERNAL MOUTHPIECE

A mouthpiece is a small tube (two or three times its diameter in length) attached to an orifice. An external

mouthpiece is attached to the vessel such that it projects outside. Fig.8.23 shows a tank to which is attached an

external cylindrical mouthpiece.




a.= Area of mouthpiece at outlet,

v:= Velocity of liquid at outlet,

a.= Area of flow at vena-contracta,

v.= Velocity of liquid at C-C section,

H = Height of liquid above the centre of

the mouthpiece, and

C.= Co-efficient of contraction.
Applying continuity equation at C-C and 1-1,
we get:
aA:Ve= auVs

_avi_ vi _ W
a. ala G

(where a./ a = C.= co-efficient of contraction)

V.

Taking C.= 0.62, we get: V.= iR
0.62

From section C-C the jet of liquid suddenly enlarges at section 1-1; the loss of head due to sudden enlargement is




S (]
2ol 0.62

0.375 v{
2g
(Please refer to Art. 12.4.1 for loss of head due to sudden enlargement)

Applying Bernoulli’s equation to point Aand 1 -1, we get:

¥ 8 Vv P v
4 4+ 4 4z, =2+ 1 4+ +h
w 2g w 2g
Butz, = z, Zo atmospheric pressure = 0, and v 1s negligible.
w
v 0.375v]
B0 = Pr +
2g 2g
375v]
or. =22 o, = 282 _ o855
2g 375
Theoretical velocity of liquid at outlet, v,, = /2gH

Co-efficient of velocity for mouthpiece,




Actual velocity _ 0.855 4/2gH
Theoretical velocity 2gH

O =

v

= 0.855

For a mouthpiece, since the area of jet of liquid at outlet 1s equal to the area of mouthpiece at
outlet, therefore, C_ = 1.

Hence C, = C, x C,=1 x 0.855 = 0.855

Thus the value of C; for mouthpiece 1s more than the value of C, for orifice, and so discharge

through mouthpiece will be more.

NIl In actual practice C = C, = 0.82.




DISCHARGE THROUGH A CONVERGENT-DIVERGENT MOUTHPIECE

shows a convergent-divergent mouthpiece (which converges upto vena-contracta and then diverges). In this
mouthpiece since there is no sudden enlargement of the jet, therefore, the loss of energy due to sudden

enlargement is eliminated.
Free water surface

For this mouthpiece. Cs= 1.
Let, H = Head of liquid over the mouthpiece,
H.= Atmospheric pressure head, and

H.= Absolute pressure head at vena-contracta.

Applying Bernoulli’s equation at the free water surface and section C-C,we get:

P v? P, v?
—+—+z7z=—=+-"X+7z2,
w 29 w 2g

Assuming that datum passes through the centre of the mouthpiece, we have:

P Pc _ —
;:Ha,V:O,;—H,ZC—O




OI', Ha + H = Hc
29

OI’, vC:\/zg(Ha'l'H_Hc)

Now applying Bernoulli’s equation at sections C-C and 1-1, we get:




Also from eqn. (7), we have:

29H

ac vc = al vl

v. A2g (H, +H —H,) _\/Ha LG
o' 2gH /74 H

or,

1+H"_Hc
H

The discharge, O = a_ % ,/2gH




8.15. DISCHARGE THROUGH AN INTERNAL MOUTHPIECE
(OR RE-ENTRANT OR BORDA’S MOUTHPIECE)

An internal mouthpiece 1s short cylindrical tube attached to an orifice in such a way that it
(tube) projects inwardly to a tank. If the length of the tube 1s equal to diameter, the jet of hiquid
comes out from mouthpiece without touching the
sides of the tube (Fig. 8.26); the mouthpiece 1s known
as running free. But if the length of the tube is about 3
times its diameter, the jet comes out with its diameter
equal to the diameter of mouthpiece at the outlet (Fig.
8.27); the mouthpiece is said to be running full.

8.15.1. Mouthpiece Running Free

Consider a mouthpiece running free as shown in
Fig. 8.26. |

¥
C

Fig. 8.26. Mouthpiece running free.




Let, H = Height of the liquid above the mouthpiece,
a = Area of orifice or mouthpiece,
a. = Area of contracted jet, and
v, = Velocity through mouthpiece.
". Pressure of the liquid on the mouthpiece, p = wH
and, force acting on the mouthpiece
= Pressure x area
= wH X a = iF)

wda.v,

g

Mass of liquid flowing per second =

Momentum of flowing liquid/sec.

wa.\v, XV,

= Mass x velocity =

2
wa,v,
g

Since the water is initially at rest, therefore initial momentum = 0

2
wa,.v,

g

(i)

Change of momentum =




As per Newton’s second law of motion, the force is equal to the rate of change of momentum.

Therefore equating (7) and (i7), we get:

2
WH e = wacvc
g
a V2
Himag & <5
53
2 2
Yo sun = SE%
2g g
Hh C — 1
a=2a or— = ==
a 2
. . a
Co-efficient of contraction, C, = — =10.5
a

Since there 1s no loss of head, co-efficient of velocity, C, = 1.0
Co-efficient of discharge, C; = C, x C,=0.5x1=0.5

Discharge, Q = C; x a x ,/2 gH

= D3R ax \/2gH

8.15.2 Mouthpiece Running Full

Consider a mouthpiece running full as shown in Fig. 8.27.
Let, a, = Area at vena-contracta,

a = Area of orifice or mouthpiece,

c

v_ = Velocity of the liquid at C-C (vena-contracta),

(81}




v, = Velocity of the liquid at 1-1 (or outlet), and
H = Height of liquid above the mouthpiece. _f_rf‘f water surface
Since the liquid is flowing continuosly, therefore from e
the continuity equation, we have:
a4 v, = (a,= a) H
&
¥ = .(7) WL | -
a, >, e B ol L
=t :
We know that the co-efficient of contraction for an " T I
internal mouthpiece i1s 0.5. Substituting this value of C
o | =%} =psss (i), we get: Fig. 8.27. Mouthpiece running full.
(& al 2
v, = 2v, ...(7)

The jet of liquid after passing through C-C, suddenly enlarges at section 1-1. Therefore, there
will be loss of head due to sudden enlargement,

(v, —V1)2 _ (2v _V1)2

h. = Spe= v
2
— 2
2g
Applying Bernoulli’s equation to free water surface in tank and section 1-1 (or outlet),we get:
2 2
P 1st ﬂ+i+:1 + hy

w 2g w 2g




Assuming datum line passing through the centre line of mouthpiece

V-
+ =—— OF &= \/ gH
2g g
Here v, 1s the actual velocity as losses have been taken into account.
But throretical velocity,

vV, 2gH

: : JeH 1
. Co-efficient of velocity, C s S (- I
v 2gH N2
As the area of the jet at outlet i1s equal to the area of the mouthpiece, hence co-efficient of
contraction = 1

& — R~ x =0.707

1 1
V22
Discharge, O = C; X a X ,/ZgH =0.707 x a X \/ZgH







