The Electric and Magnetic Fields of a Moving Charge

The clectric and magnetic fields E and B at point R and time t duc 1o a particle of charge
q with the worldline Ry(t) can be derived from the retarded potentials
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For convenience we also define the unit vector
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The clectric field E is given in terms of the potentials by
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The scalar potential ¢ is explicitly a function of the coordinates x, y, z, and t of the field
point (R.1). but also implicitly as a function of the retarded time t, which (for a given
charge worldline) is itself a function of the field point coordinates. Thus the partial

derivative of & with respect to x at constant y,z,t must account for the implicit
dependency as follows
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So, we have the partial
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The other partial derivatives can be derived similarly. Also. since - © . we have for
constant t the relation
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which we can solve for the total derivative of © with respect (o x to give
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Making these substitutions into the expression for ddo/ox we get
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Combining this with the corresponding expressions for d¢/Ay and 6¢/0z gives the
gradient
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Re-arranging terms, this can be written as
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If this were the complete electric field, we see that the first term would give the

“clectrostatic” component proportional to 1/r?, and the second term would give a
“radiation” component proportional to 1/r due to acceleration of the charge. For example,
if the charge was oscillating in a small range on the x axis, the x component of the
gradient also oscillates, and the wave of oscillations propagates outward along the x axis
at the speed of light. (This is discussed in more detail in The Electric Potential of a
Moving Charge.) However, this is a longitudinal wave, i.c., the oscillating gradient vector
is parallel to the direction of propagation of the wave. Furthermore, the maximum
intensity is along the axis of the oscillating charge, and drops to zero in the perpendicular
plane. These characteristics are contrary to what we know about propagating disturbances
in the electric (and magnetic) fields, in which the field vector oscillations are are
transverse to the direction of propagation of the waves, and which vanish along the axis
of an oscillating charge.

In order to determine the actual behavior of the electric field due to a moving charge we
must take into account the term GA/6t, which can also be written in terms of ¢ and v as
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It the acceleration is zero but the velocity is non-zcro, the electric field points cither
positively or negatively along the direction of w - v. which may secm surprising at first,
because we know the clectrie field of a uniformly moving charge points dircetly toward
(or away from) the instantancous position of the source charge with respeet fo any system
of mertial coordinates. However, this is acltually consistent with our result, because w1s
the unit vector pointing from the past position of the charge to the present ficld point, as
tlustrated below
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T'hus the vector from the charge at time t to the field point at tis r—(t—7)v. Dividing this
Ay =1 - 1 oives u - v. which confirms that the electric field at R points along the
direction from R 1o the present (not the retarded) position of the charge. I_t’s also worth
fotine that the magnitude of v is always less than the magnitude of the unit vectorw

( 'f\\x‘;usa: we have ;alkcn units of space and time such that ¢ = 1), so the s';gn of the electric
field (with a = 0) is always positive for any velocity v, positive or negative.

I¥we consider one-dimensional motion and field points along the axis of mot%on, then the
<ccond term (the one involving acceleration) drops out (because the acceleration,

velocity. and displacement vectors are all parallel), the unit vector u becomes l and the
velocity alon ¢ the axis of motion is the scalar v, and the equation for the electric field
reduces to

As always, v represents the velocity of the charge at the prior time T, and r is the present
position of the field point relative to the charge’s position at the prior time t. It follows
that the cffect on the field of a change in the speed of the charge propagates away from
the charge at the speed of light. However, for the reason noted above, this ripple effect
cannot cause the sign of E to change, so this isn’t true “radiation™.

In full generality, with arbitrary positions, velocities, and accelerations, the second term
in the brackets in the expression for E is non-zero (provided v does not equal u). This
term can be either positive or negative, depending on the sign of the acceleration. The
magnitude of the second term drops off in proportion to 1/r, as opposed to 1/r2 for the
first term. Of course, the acceleration a is at the prior time T, so the effect of any
acceleration propagates away from the charge at the speed of light. Also, the direction of

this ;crm is perpendicular (o the unit vector u from the retarded position of the charge,
contirming our expectation that the radiative component of the electric field i

ing ¢ ric field is S
to the direction of propagation, it Ny

By a derivation similar to the one above. i
s €, 1t can be shown that the magnetic field of the
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To determine du/dt we differentiate the relation -t r with respeet to tand write the
result in the form

- dr dr dr
dt dr dt
Solving this for dr/dt gives
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Substituting into the previous expression and re-arranging terms gives

{ < 3
. L:':‘- 6'¢\16’T q [ (l_u.‘v) . (u.".._“y +r'a) '\i
—FvVv—— = | e : ]
. BT 3’[;"5* (l_u“_).’; g 5
{ : :; %
q (:1-_“"-]3'1'(“!3)\--'—(lllv—-v )‘,-
AL =L 3 5 rz
(1-uev) L ,

Subtracting this from the negative gradient of f gives the total electric field
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Making use of the vector triple-product identity
ax(pxy)=(osy)p—(af)y

to simplify the numerator of the second term inside the brackets, we get
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Naturally if the velocity and acceleration of the charge are both zero, this reduces to
Coulomb’s | 1-2 Thus the force QE on a test charge Q at the field oot B sl
& ection (i.e., pointing from q to Q) if Q and q have the same sign,
rce on Q. 1f q and Q have opposite g Qﬁ.& o
senting an attractive force, i.c., a force towatdige..  Sidetestl,
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This shows that t} fati
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ey l1"\d.1'1um1 component of the magnetic ficld is also perpendicular to the
somponertt of C nl\ ( e retarded position of the charge. so it too (like the clectric
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adiation) is transverse to the direction of propagation. Furthermore. notice

that the dot product of the clectri : b -
o ot product of the electric and magnetic radiation components (multiplied by r2)
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where we have made use of the fact thatu xa=-aXu. Scltingm=axu andn=uX
(a X v). this dot product can be written as the negative of
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The first and last terms on the right side are obviously zero, because u X m is
perpendicular to m, and u X n is perpendicular to n. Therefore the dot product is

lurnl{usm)-men = (u-u)(n-mi}—[‘u-m)(u-n)—m-n

The first and last terms on the right side cancel out, and both factors of the middle term
are zero because m and n are both perpendicular to u. Hence the dot product vanishes
identically, signifying that the radiation components of the electric and magnetic fields
are perpendicular to each other (as well as both being perpendicular to u).

It’s also worth noting that the radiation components of the electric and magnetic fields are

equal in magnitude. To prove this, determine the squared magnitudes by taking the dot

product of cach vector with itself. This gives the two quantities
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Since m and n are each perpendicular to u, the middle terms of both the above

;xpres_sions vanish, Also, the last terms of the two expressions can be expanded to the
orm
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