


Objectives
Determine the variation of pressure in a fluid at
rest

Calculate pressure using various kinds of
manometers

Calculate the forces exerted by a fluid at rest on
plane or curved submerged surfaces

Analyze the stability of floating and submerged
bodies

Analyze the rigid-body motion of fluids In
containers during linear acceleration or rotation



3—-1 m PRESSURE

Pressure: A normal force exerted mﬁ 70 kg f”\f:wl -
. . II «] | W | N
by a fluid per unit area - i AR
L A | .
1

1 Pa=1N/m’

|

[ bar = 10° Pa = 0.1 MPa = 100 kPa
[ atm = 101,325 Pa = 101.325 kPa = 1.01325 bars
| kgf/cm* = 9.807 N/cm* = 9.807 X 10" N/m* = 9.807 X 10" Pa
= 0.9807 bar TTTT HH
= 0.9679 atm

P =20 kPa P =40 kPa

P = (70x9.81/1000) kN / 0.0343 m2 = 20 kPa

The normal stress (or “pressure”) on the
feet of a chubby person is much greater

than on the feet of a slim person.
§ Some

basic
pressure
gages.




Absolute pressure: The actual pressure at a given position. It is
measured relative to absolute vacuum (i.e., absolute zero pressure).

Gage pressure: The difference between the absolute pressure and the
local atmospheric pressure. Most pressure-measuring devices are
calibrated to read zero in the atmosphere, and so they indicate gage

pressure.

Vacuum pressures: Pressures below atmospheric pressure.

Throughout
this text, the
pressure P
will denote
absolute
pressure
unless
specified
otherwise.
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[
m EXAMPLE 3-1 Absolute Pressure of a Vacuum Chamber

N
m A vacuum gage connected to a chamber reads 40 kPa at a location where

m the atmospheric pressure is 100 kPa. Determine the absolute pressure in the
chamber.

SOLUTION The gage pressure of a vacuum chamber is given. The absolute
pressure in the chamber is to be determined.
Analysis The absolute pressure is easily determined from Eq. 3-2 to be

P, =P, —P._=100-40 = 60kPa

atm vac

Discussion Note that the /ocal value of the atmospheric pressure is used
when determining the absolute pressure.



Pressure at a Point

> F,=ma, = 0: P, AyAz — P;Avlsinfd =0
1
2F5=maz=0: P, ;i}-*;ﬁ:f—P_:;ﬂ}-*fcosﬁ—E;:gﬂxﬂ.yﬂ;.
W = mg = pg Ax Ay Az/2 Az =1sin#.
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Forces acting on a wedge-shaped
fluid element in equilibrium.

Pressure is the compressive
force per unit area but it is not
a vector. Pressure at any point
in a fluid is the same in all
directions. Pressure has
magnitude but not a specific
direction, and thus it is a
scalar quantity.

P P

P

Pressure is a scalar guantity,
not a vector; the pressure at a
point in a fluid is the same in
all directions.



Variation of Pressure with Depth

AP =P, — P, = pg Az = y,Az When the variation of density

with elevation is known
Phc]im—' - P;:hm-‘e: + J”.QLA:" - P;lhu‘»'c + "}"J.lﬂ

2
P = Palm + pgh or Pgagc — Pgh AP = P2 B Pl - J P8 dz
l
E 'y
Y4 lg,
Py
]
2 — Ax D
Prage Y —
| — lw D
o Je
— T
P,

The pressure of a fluid at rest
increases with depth (as a
result of added weight).

0

Free-body diagram of a rectangular
fluid element in equilibrium.



P, =1atm

top

AIR
(A 5-m-high room)

P =-1.006 atm

bottom

In a room filled with a gas, the variation
of pressure with height is negligible.

Pbelﬂw = Palm + pgh

Pressure in a liquid at rest
Increases linearly with
distance from the free
surface.



Patm

|

Water

Py=Pp=Pr=Pp=Pp=Ppr=Pg=Py,+pgh
Py#P,

The pressure is the same at all points on a horizontal plane in a given fluid
regardless of geometry, provided that the points are interconnected by the
same fluid.



Pascal’s law: The pressure applied to a confined fluid
increases the pressure throughout by the same amount.

h_ b _4

P1:P2 —> = —> —
A A F. A,

The area ratio A,/A, IS
called the ideal mechanical
advantage of the hydraulic
lift.

Lifting of a large l
weight by a small (DA Ay —
force by the

application of
Pascal’s law.
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3—-2 m PRESSURE MEASUREMENT DEVICES

The Barometer

« Atmospheric pressure is measured by a device called a barometer; thus,
the atmospheric pressure is often referred to as the barometric pressure.

* Afrequently used pressure unit is the standard atmosphere, which is
defined as the pressure produced by a column of mercury 760 mm in height
at 0°C (py4 = 13,595 kg/m?) under standard gravitational acceleration
(g = 9.807 m/s?).

/Vacuum Pailln'l — pgh ()
N 0 The length or the ~
cross-sectional area N
of the tube has no L
- A effect on the height

h h of the fluid column of

a barometer, A A, @D o
provided that the

W= pghA

-l —

tube diameter is

\ ool f

large enough to
avoid surface tension
(capillary) effects.

D e

—-—
—'..

U | |

The basic barometer.

ﬂlﬂ]




At high altitudes, a car engine generates
less power and a person gets less oxygen
because of the lower density of air.
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EXAMPLE 3-2 Measuring Atmospheric Pressure
with a Barometer

Determine the atmospheric pressure at a location where the barometric
reading is 740 mm Hg and the gravitational acceleration is g = 9.805 m/s?.
Assume the temperature of mercury to be 10°C, at which its density is
13,570 kg/m?.

SOLUTION The barometric reading at a location in height of mercury col-
umn is given. The atmospheric pressure is to be determined.

Assumptions The temperature of mercury is assumed to be 10°C.

Properties The density of mercury is given to be 13,570 kg/m?3.

Analysis From Eq. 3-12, the atmospheric pressure is determined to be

Pyw = pgh

1N 1 kPa
= (13,570 kg/m?)(9.805 m/s)(0.740 ( )( )
( 8/mO 805 m/s)O- 740 M\ T rs? )\ 1000 N/

= 98.5 kPa

Discussion Note that density changes with temperature, and thus this effect
should be considered in calculations.

13



EXAMPLE 3-3 Gravity Driven Flow from an IV Bottle

Intravenous infusions usually are driven by gravity by hanging the fluid bot- g
tle at sufficient height to counteract the blood pressure in the vein and to m
force the fluid into the body (Fig. 3-15). The higher the bottle is raised, the
higher the flow rate of the fluid will be. (a) If it is observed that the fluid
and the blood pressures balance each other when the bottle is 1.2 m above
the arm level, determine the gage pressure of the blood. (b) If the gage pres-
sure of the fluid at the arm level needs to be 20 kPa for sufficient flow rate,
determine how high the bottle must be placed. Take the density of the fluid
to be 1020 kg/m3.

SOLUTION It is given that an IV fluid and the blood pressures balance each
other when the bottle is at a certain height. The gage pressure of the blood
and elevation of the bottle required to maintain flow at the desired rate are
to be determined.

14



Assumptions 1 The IV fluid is incompressible. 2 The IV bottle is open to
the atmosphere.

Properties The density of the IV fluid is given to be p = 1020 kg/m?.
Analysis (a) Noting that the IV fluid and the blood pressures balance each
other when the bottle is 1.2 m above the arm level, the gage pressure of the
blood in the arm is simply equal to the gage pressure of the IV fluid at a
depth of 1.2 m,

Pgage,aﬂn — Pabs - Palm - Pgharm—huttle

1 kN 1 kPa
— (1020 kg/m*)(9.81 m/s2)(1.20 ( )( )
(1020 ke/m)(3 81 m/s5(1.20 m\ 1505 1 g2 )\ T i/

= 12.0 kPa

(b) To provide a gage pressure of 20 kPa at the arm level, the height of the
surface of the IV fluid in the bottle from the arm level is again determined
frDm Pgage, arm pghﬂnn—botlle tU be

Parm—botte = Pgagc,m
P8
B 20 kPa (1000 l{g-[nffiQ) ( 1 kamQ)
(1020 kg/m*)(9.81 m/s?)\. 1 kN 1 kPa
= 2.00 m

Discussion Note that the height of the reservoir can be used to control flow
rates in gravity-driven flows. When there is flow, the pressure drop in the tube
due to frictional effects also should be considered. For a specified flow rate,

15
this requires raising the bottle a little higher to overcome the pressure drop.



EXAMPLE 34 Hydrostatic Pressure in a Solar Pond
with Variahle Density

Solar ponds are small artificial lakes of a few meters deep that are used to
store solar energy. The rise of heated (and thus less dense) water to the sur-
face is prevented by adding salt at the pond bottom. In a typical salt gradi-
ent solar pond, the density of water increases in the gradient zone, as shown
in Fig. 3-16, and the density can be expressed as

_ of TS
p pD\Kl—i-tan(:lH)

where pg is the density on the water surface, s is the vertical distance mea-
sured downward from the top of the gradient zone (s = —Zz), and H is the
thickness of the gradient zone. For H = 4 m, py = 1040 kg/m3, and a
thickness of 0.8 m for the surface zone, calculate the gage pressure at the
bottom of the gradient zone.

SOLUTION The variation of density of saline water in the gradient zone of a
solar pond with depth is given. The gage pressure at the bottom of the gradi-
ent zone Is to be determined.

Assumptions The density in the surface zone of the pond is constant.
Properties The density of brine on the surface is given to be 1040 kg/m?3.
Analysis We label the top and the bottom of the gradient zone as 1 and
2, respectively. Noting that the density of the surface zone is constant, the

Sun Increasing salinity
and density
po = 1040 kgfmyv
=\ Surface zone | —1) /
>

.';1
J _Nradlent zone\%
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gage pressure at the bottom of the surface zone (which is the top of the
gradient zone) is

) = 8.16 kPa

P, = pgh, = (1040 kgjm3)(9.81 m/s*)(0.8 m](m

since 1 kN/m? = 1 kPa. Since s = —z, the differential change in hydrostatic
pressure across a vertical distance of ds is given by

dP = pg ds

Integrating from the top of the gradient zone (point 1 where s = 0) to any
location s in the gradient zone (no subscript) gives

- r3
P—P =|pgds — P=P + L P“\Xl + tanz(;%)gds
J0 o

Performing the integration gives the variation of gage pressure in the gradi-
ent zone to be

4H T 5
P=P, + pg—si h‘l(t ——)
y T Pog - sin em4

Then the pressure at the bottom of the gradient zone (s = H = 4 m) becomes

44 m) a 4 1 kN
P, = 8.16 kPa + (1040 ke/m*)(9 81 m/s? : _1(t ——)(—)
2 a ( gm}{ m/s-) sinh an—- 1 x

= 54.0 kPa (gage)

Discussion The variation of gage pressure in the gradient zone with depth is
plotted in Fig. 3-1/. The dashed line indicates the hydrostatic pressure for
the case of constant density at 1040 kg/m? and is given for reference. Note
that the variation of pressure with depth is not linear when density varies
with depth. That is why integration was required.

m

8,

3.5

2.5

1.5

0.5

7

Constant X
density “*7‘ X

/

&/ — Variable —
/ density |

/

20 30 40 50
P, kPa

The variation of gage
pressure with depth in the
gradient zone of the solar

pond.
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A flow section

The Manometer

It is commonly used to measure small and
moderate pressure differences. A manometer
contains one or more fluids such as mercury,

water, alcohol, or oil.
Measuring the

Pyt \V4 pressure drop across
a flow section or a flow P1 1
device by a differential

manometer.

P, + pigla + h) — pgh — piga = P,
Pl_Pzz(Pz_Pl)é’h

Fluid 1

|
—

—
—

e

Fluid 2

—
]

e

The basic
manometer.

—
[id

[

Gas
Py + p1&hy + prghy, + psghs = P,

In stacked-up fluid layers, the
pressure change across a fluid layer

of density p and height h is pgh. P, = P,, + pgh

(]




A simple U-tube
manometer, with
high pressure
applied to the right
side.
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|
m EXAMPLE 3-5 Measuring Pressure with a Manometer

: A manometer is used to measure the pressure of a gas in a tank. The fluid

m used has a specific gravity of 0.85, and the manometer column height is
55 c¢m, as shown in Fig. 3-20. If the local atmospheric pressure is 96 kPa,
determine the absolute pressure within the tank.

SOLUTION The reading of a manometer attached to a tank and the atmo-
spheric pressure are given. The absolute pressure in the tank is to be
determined.

Assumptions The density of the gas in the tank is much lower than the den-
sity of the manometer fluid.

Properties The specific gravity of the manometer fluid is given to be 0.85.
We take the standard density of water to be 1000 kg/m3.

Analysis The density of the fluid is obtained by multiplying its specific
gravity by the density of water,

p = SG (pyo) = (0.85)(1000 kg/m?) = 850 kg/m’ Py =96 kPa
Then from Eq. 3-13, T
-~ P=?
g Pa”ﬂ : pgh h=55cm
= 96 kPa + (850 kg/m*)(9.81 m/s?)(0.55 m]( N )( L kP )
‘ S | 1 kg-m/s2/\ 1000 N/m? ]
= 100.6 kPa
SG=0.85

Discussion Note that the gage pressure in the tank is 4.6 kPa.
r4v)




|
EXAMPLE 3-6 Measuring Pressure with a Multifluid Manometer m

The water in a tank is pressurized by air, and the pressure is measured by a :
multifluid manometer as shown in Fig. 3-23. The tank is located on a moun- m
tain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa.
Determine the air pressure in the tank if h; = 0.1 m, h, = 0.2 m, and
hy; = 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m?,
850 kg/m3, and 13,600 kg/m?3, respectively.

SOLUTION The pressure in a pressurized water tank is measured by a multi-
fluid manometer. The air pressure in the tank is to be determined.
Assumption The air pressure in the tank is uniform (i.e., its variation with
elevation is negligible due to its low density), and thus we can determine the
pressure at the air—water interface.

Properties The densities of water, oil, and mercury are given to be
1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.

Analysis Starting with the pressure at point 1 at the air—water interface,
moving along the tube by adding or subtracting the pgh terms until we reach

point 2, and setting the result equal to P, since the tube is open to the
atmosphere gives

PI + pwalerghl + puilgh‘ﬁ - pmercuryghj - R_" - ‘F:alm

Air

»—

Water

J

Mercury

— Ol

r

.Ir.f_'a|

J
N




Solving for P, and substituting,
P, = Py = Pyaer8i — P8y + Preccury8h3

= Pym + E(Pmm:u.rth - Pwaterhl o pnilhzj
= 85.6 kPa + (9.81 m/s*)[(13.600 kg/m?)(0.35 m) — (1000 kg/m?)(0.1 m)

IN 1 kPa
— (850 ke/m3)(0.2
(850 kg/mX m”(l kg-mj’sz)(lﬂﬂﬂ mez)
= 130 kPa

Discussion Note that jumping horizontally from one tube to the next and
realizing that pressure remains the same in the same fluid simplifies the
analysis considerably. Also note that mercury is a toxic fluid, and mercury
manometers and thermometers are being replaced by ones with safer fluids
because of the risk of exposure to mercury vapor during an accident.

Mercury

22



n
m EXAMPLE 3-7 Analyzing a Multifluid Manometer with EES

: Reconsider the multifluid manometer discussed in Example 3—6. Determine

W the air pressure in the tank using EES. Also determine what the differential
fluid height h; would be for the same air pressure if the mercury in the last
column were replaced by seawater with a density of 1030 kg/m?.

SOLUTION The pressure in a water tank is measured by a multifluid
manometer. The air pressure in the tank and the differential fluid height h;
if mercury is replaced by seawater are to be determined using EES.

Analysis We start the EES program, open a new file, and type the following
on the blank screen that appears (we express the atmospheric pressure in Pa
for unit consistency):

g=9381
Patm=385600
h1=0.1: h2=0.2: h3=0.35
rw=1000: roil=850: rm=13600
Pl+rw*g*hl +roil*g*h2 —rm*g*h3=Patm
Here P1 is the only unknown, and it is determined by EES to be
P, = 129647 Pa = 130 kPa

which is identical to the result obtained in Example 3-6. The height of the
fluid column hy when mercury is replaced by seawater is determined easily by
replacing “h3=0.35" by “P1=129647" and “rm=13600" by “rm=1030,"
and clicking on the calculator symbol. It gives

h; = 4.62 m



Other Pressure Measurement Devices

* Bourdon tube: Consists of a hollow metal tube
bent like a hook whose end is closed and \
connected to a dial indicator needle.

* Pressure transducers: Use various techniques
to convert the pressure effect to an electrical o
effect such as a change in voltage, resistance, C-type Spiral

or capacitance. "
* Pressure transducers are smaller and faster,

and they can be more sensitive, reliable, and

precise than their mechanical counterparts.
« Strain-gage pressure transducers: Work by

having a diaphragm deflect between two |

: Twisted tube
chambers open to the pressure inputs.

T TTTTTTTTITTTTT T2y
O

Helical

’
’;11::1::;::1:11111/

Tube cross section

* Piezoelectric transducers: Also called solid-
state pressure transducers, work on the
principle that an electric potential is generated in
a crystalline substance when it is subjected to
mechanical pressure.

Various types of Bourdon tubes used
to measure pressure.



Deadweight tester: Another type of mechanical pressure gage. It is used
primarily for calibration and can measure extremely high pressures.

A deadweight tester measures pressure directly through application of a
weight that provides a force per unit area—the fundamental definition of
pressure.

It is constructed with an internal chamber filled with a fluid (usually oil),
along with a tight-fitting piston, cylinder, and plunger.

Weights are applied to the top of the piston, which exerts a force on the oll
in the chamber. The total force F acting on the oil at the piston—oil interface
Is the sum of the weight of the piston plus the applied weights.

Weights

| | Oil

reservoir

/ Adjustable

lF / plunger

Piston —__

A deadweight tester is able

to measure extremely high
“= pressures (up to 70 MPa in
Reference pressure port Crank some applications). 25

Internal chamber




3—-3 m INTRODUCTION TO FLUID STATICS

Fluid statics: Deals with problems associated with fluids at rest.
The fluid can be either gaseous or liquid.

Hydrostatics: When thye fluid is a liquid.

Aerostatics: When the fluid is a gas.

In fluid statics, there is no relative motion between adjacent fluid
layers, and thus there are no shear (tangential) stresses in the fluid
trying to deform it.

The only stress we deal with in fluid statics is the normal stress, which
IS the pressure, and the variation of pressure is due only to the
weight of the fluid.

The topic of fluid statics has significance only in gravity fields.

The design of many engineering systems such as water dams and
liquid storage tanks requires the determination of the forces acting
on the surfaces using fluid statics.
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3—4 m HYDROSTATIC
FORCES ON SUBMERGED
PLANE SURFACES

A plate, such as a gate valve in a dam,
the wall of a liquid storage tank, or the
hull of a ship at rest, is subjected to |
fluid pressure distributed over its Hoover Dam.

surface when exposed to a liquid.

Palm
On a plane surface, the hydrostatic ./ \
forces form a system of parallel forces, | :
and we often need to determine the < /”|—‘ L y <
magnitude of the force and its point of |
application, which is called the center /4:— -
of pressure. h /‘f i - h
[
=
When analyzing hydrostatic forceson _{ / | | .
submerged surfaces, the atmospheric \ P+ pg \Pgh

pressure can be subtracted for simplicity
when it acts on both sides of the structure. (@ Py, considered (b) Py, subtracted



Pressure

/ distribution

- _— \‘ Pressure prism
' \ \‘\ \\ \\ \ ,
\\. \\\ ‘-\'\.__ 'x_\_‘. \\ \ \\\ \\"\\‘. ]
VW \:Q Hydrostatic force
Z X\ \ \ \ on an inclined
P=Fo+peh \\"-:_\‘ ‘\\\ - \-— Plane surface plane Surface
/- Centroid \ o completely
‘enter of pressure :
Plane surface . Smeerged ina
: = F,=|PdA . .
of area A R J ||qU|d.

Fpo=1(Py+ pgvesin HA = (Py + pghe)A = PFA =P, A

cr
o

P
atm / Free surface

v

ave == Fam + P8Nc The pressure at the

llll - -
Centroid centroid of a surface is
of surface equivalent to the average

28
pressure on the surface.



Yp

The resultant force acting on a ~Line of action
plane surface is equal to the
product of the pressure at the
centroid of the surface and the Fp=P,A
surface area, and its line of
action passes through the
center of pressure.

Centelr of
pressure Centroid
of area
f\. v, O
— I-ill.l{'-' _|_ . .
[ve T Py/(pg sin 6)]A
B L c N second moment of area
= V¢ _, [, 0 V= dA (area moment of inertia)
1'- {' .'4 3
A about the x-axis.

4
I_u: a I ax, O + .*‘-"'1{17 A
29



bi2

c | c

AN

o=

al2 al2
A=ab, I -=ab*12 A=wR% I, -=7R'M A=mab, I .= mab’4
{a) Rectangle iB) Circle () Ellipse
_"|_I ' 3
ol Vv oh
// ch
[ ®© T | 7 < e
. | X | | 4% X
|
- s - ﬂ (] _l-‘ ﬂ
3T 3
al2 al2
A=abi2, I, ~=ab¥36 = wR¥2, I, ~=0.109757R* A=mabl2, 1, -=0.109757ab?
() Triangle (£) Semicircle () Semiellipse

The centroid and the centroidal moments of

Inertia for some common geometries.
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Pressure acts normal to the surface, and
the hydrostatic forces acting on a flat
plate of any shape form a volume whose
base is the plate area and whose length
IS the linearly varying pressure.

This virtual pressure prism has an
interesting physical interpretation: its
volume is equal to the magnitude of the
resultant hydrostatic force acting on the
plate since Fg = | PdA, and the line of
action of this force passes through the
centroid of this homogeneous prism.

The projection of the centroid on the plate
IS the pressure center.

Therefore, with the concept of pressure
prism, the problem of describing the
resultant hydrostatic force on a plane
surface reduces to finding the volume
and the two coordinates of the centroid of
this pressure prism.

Vs Pressure prism

Surface

b

v
=~
-~

The hydrostatic forces acting on a
plane surface form a pressure prism
whose base (left face) is the surface
and whose length is the pressure.
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Special Case: 0 P,
Submerged < 6
Rectangular Plate s

Hydrostatic force acting
on the top surface of a
submerged tilted b,
rectangular plate.

b ab’/12
:'L"P- = ¥ —|_ - —|_ - . ]
2 s+ b2+ Py/(pgsinB)]ab
b b?
2 12[s + b/2 + Py/(pg sin B)] (@) Tilted plate

Fp=[Py+ pg(s + b/2) sin B]lab

=5 +

Tilted rectangular plate: Fpo=P:A =[P, + pe(s + b/2) sin Hlab

Tilted rectangular plate (s = 0): Fp =[P, + pg(b sin 8)/2]ab =



SEE—
-

yP
b
* r

1=

2

Fp=[Py+ pg(s + b/2)]ab

(b) Vertical plate
Vertical rectangular plate:

Vertical rectangular plate (s = 0):

Hydrostatic force
acting on the top
surface of a
submerged vertical
rectangular plate.

Fr = [Py + pg(s + b/2)]ab

Fr= (Py+ pgb/2)ab
33



Hydrostatic force acting
on the top surface of a
submerged horizontal
rectangular plate.

Horizontal rectangular plate:

Fp=(Py+ pgh)ab

EERERA ARERERER'

!

(¢) Horizontal plate

Frp = (P, + pgh)ab
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EXAMPLE 3-8 Hydrostatic Force Acting on the Door
of a Submerged Car

A heavy car plunges into a lake during an accident and lands at the bottom
of the lake on its wheels (Fig. 3-34). The door is 1.2 m high and 1 m wide,
and the top edge of the door is 8 m below the free surface of the water.
Determine the hydrostatic force on the door and the location of the pressure
center, and discuss if the driver can open the door.

SOLUTION A car is submerged in water. The hydrostatic force on the door
is to be determined, and the likelihood of the driver opening the door is to
be assessed.

Assumptions 1 The bottom surface of the lake is horizontal. 2 The passen-
ger cabin is well-sealed so that no water leaks inside. 3 The door can be
approximated as a vertical rectangular plate. 4 The pressure in the passen-
ger cabin remains at atmospheric value since there is no water leaking in,
and thus no compression of the air inside. Therefore, atmospheric pressure
cancels out in the calculations since it acts on both sides of the door. 5 The
weight of the car is larger than the buoyant force acting on it.

Properties We take the density of lake water to be 1000 kg/m? throughout.
Analysis The average (gage) pressure on the door is the pressure value at
the centroid (midpoint) of the door and is determined to be

Pa'.'g = PC = Pghc = PS‘{S + b";g)

1 kN
_ 3 2 + 12/2
(1000 kg/m?)(9.81 m/s")(8 + 1.2/2 m}(l'[]'[]'[] kg-mfsz)

= 84.4 kN/m?

a
I

Lake
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Then the resultant hydrostatic force on the door becomes

F,=P,,A=(844kN/m*>)(I1m X 12m) = 101.3 kN

ave

The pressure center is directly under the midpoint of the door, and its dis-
tance from the surface of the lake is determined from Eqg. 3-24 by setting
P, = 0, yielding

b? 1.2 1.2
yp =85 + < = 8.6l m

- =8+ — +
2 12(s + b/2) 2 12(8 + 1.2/2)

Discussion A strong person can lift 100 kg, which is a weight of 981 N or
about 1 kN. Also, the person can apply the force at a point farthest from the
hinges (1 m farther) for maximum effect and generate a moment of 1 kN-m.
The resultant hydrostatic force acts under the midpoint of the door, and thus
a distance of 0.5 m from the hinges. This generates a moment of 50.6 kN-m,
which is about 50 times the moment the driver can possibly generate. There-
fore, it is impossible for the driver to open the door of the car. The driver's
best bet is to let some water in (by rolling the window down a little, for
example) and to keep his or her head close to the ceiling. The driver should
be able to open the door shortly before the car is filled with water since at
that point the pressures on both sides of the door are nearly the same and
opening the door in water is almost as easy as opening it in air.

36



3—-5 m HYDROSTATIC FORCES ON
SUBMERGED CURVED SURFACES

QUL

Horizontal projection
/ of the curved surface

Vertical projection
of the curved surface

Free-body diagram
of the enclosed
liquid block

FR_: \/F?Ir + Fi a = Fylty
Determination of the hydrostatic force acting on a submerged curved surface.

Horizontal force component on curved surface: Fy=F,
. . H X

Vertical force component on curved surface: Fy,=F, + War



In many structures of
practical application,
the submerged
surfaces are not flat,
but curved as here at
Glen Canyon Dam in
Utah and Arizona.
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Curved Pressure \

surface oo \ \ \
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X
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¥

Resultant

force \

Fr
F‘r : 'f/ fa;
‘ Circular /
surface '

When a curved surface is above

the liquid, the weight of the liquid The hydrostatic force acting on a circular
and the vertical component of the  surface always passes through the center
hydrostatic force act in the of the circle since the pressure forces are
opposite directions. normal to the surface and they all pass 5q

through the center.



In a multilayered fluid of different densities can be determined by
considering different parts of surfaces in different fluids as different
surfaces, finding the force on each part, and then adding them using
vector addition. For a plane surface, it can be expressed as

Plane surface in a multilayered fluid: Frp= E Fri= E Pc i A,
Pe i =Py + pighe
T T O1l
The hydrostatic force on a { — \
surface submergedina | |L \\ Water
multilayered fluid can be ? [} \ Fg,
determined by considering parts l I \\
of the surface in different fluids L
as different surfaces.



EXAMPLE 3-9 A Gravity-Controlled Cylindrical Gate

A long solid cylinder of radius 0.8 m hinged at point A is used as an auto- g
matic gate, as shown in Fig. 3-40. When the water level reaches 5 m, the m
gate opens by turning about the hinge at point A. Determine (a) the hydro-
static force acting on the cylinder and its line of action when the gate opens
and (b) the weight of the cylinder per m length of the cylinder.

SOLUTION The height of a water reservoir is controlled by a cylindrical gate
hinged to the reservoir. The hydrostatic force on the cylinder and the weight
of the cylinder per m length are to be determined.

Assumptions 1 Friction at the hinge is negligible. 2 Atmospheric pressure
acts on both sides of the gate, and thus it cancels out.

Properties We take the density of water to be 1000 kg/m® throughout.
Analysis (a) We consider the free-body diagram of the liquid block enclosed
by the circular surface of the cylinder and its vertical and horizontal projec-
tions. The hydrostatic forces acting on the vertical and horizontal plane sur-
faces as well as the weight of the liquid block are determined as

Horizontal force on vertical surface:

Fy=F,= P, A= pghcA= pg(s + RI2)A

1 kN
= (1000 kg/m>)(9.81 m/s*)(4.2 + 0.8/2m)(0.8 m X 1 m)( 1000 ](g'mffiQ)
= 36.1 kN

Vertical force on horizontal surface (upward):

Ev - Pang = pg‘?'rCA - pghbmmmA

1 kN
— (1000 ke/m3)(9.81 m/s)(5 m)(0.8 m X 1 ‘;( )
g/mHO 81 m/sH0 myO.8m X 1 m) 4o gmrs?

— 392 kN
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||

5 =42m

Schematic for Example 3-9
and the free-body diagram
of the liquid underneath the
cylinder.
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Weight (downward) of fluid block for one m width into the page:
W = mg = pgV = pg(R* — wR*/4)(1 m)

= (1000 kg/m*)(9.81 m/s*)(0.8 m)*(1 — 7/4)(1 m](
= 1.3 kN

1000 kg-m;"sz)

Therefore, the net upward vertical force is

F,=F, —W=392 - 13 =379kN

L

Then the magnitude and direction of the hydrostatic force acting on the
cylindrical surface become

F,= VF% + FL = \/36.12 + 37.9

52.3 kN

tan @ = F,/F,; = 379/36.1 = 1.05 — 0 = 464°

Therefore, the magnitude of the hydrostatic force acting on the cylinder is
52.3 kN per m length of the cylinder, and its line of action passes through
the center of the cylinder making an angle 46.4° with the horizontal.

(b) When the water level is 5 m high, the gate is about to open and thus the
reaction force at the bottom of the cylinder is zero. Then the forces other
than those at the hinge acting on the cylinder are its weight, acting through
the center, and the hydrostatic force exerted by water. Taking a moment
about point A at the location of the hinge and equating it to zero gives

FeRsin@ — W R =0 — W, = Fpsin6 = (523 kN) sin 46.4° = 37.9 kN

Discussion The weight of the cylinder per m length is determined to be
37.9 kN. It can be shown that this corresponds to a mass of 3863 kg per m
length and to a density of 1921 kg/m? for the material of the cylinder.

cyl
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3—6 m BUOYANCY AND STABILITY

Buoyant force: The upward force a fluid exerts on a body immersed in it.
The buoyant force is caused by the increase of pressure with depth in a fluid.

V

‘ JR—

The buoyant force acting on
the plate is equal to the
weight of the liquid
displaced by the plate.

For a fluid with constant
density, the buoyant force is

— independent of the distance of
the body from the free surface.

(
\,/

prg(s + A It is also independent of the
) density of the solid body.

A flat plate of uniform thickness h submerged
in a liquid parallel to the free surface.

FJF.;P — h|.'1[”[“ - FlL'P — Iir.-’lr' |£“-F‘"' _|_ r‘llr }.4 - IJ;"{:.‘;_-Q — I]ir__{:lflr.% — I]I-'__{:lvf



The buoyant forces acting on a

Fluid solid body submerged in a fluid and
on a fluid body of the same shape
at the same depth are identical.

==L The buoyant force Fz acts upward
| Fl”"jF R through the centroid C of the
R E J,"""---- displaced volume and is equal in
|' S ij magnitude to the weight W of the
| w displaced fluid, but is opposite in
/ \ direction. For a solid of uniform

density, its weight W, also acts
through the centroid, but its
magnitude is not necessarily equal
to that of the fluid it displaces.
(Here W, > W and thus W, > Fg;
this solid body would sink.)

Archimedes’ principle: The buoyant force acting
on a body immersed in a fluid is equal to the weight
of the fluid displaced by the body, and it acts upward

through the centroid of the displaced volume. e



For floating bodies, the weight of the entire body must be equal to the

buoyant force, which is the weight of the fluid whose volume is equal to the

volume of the submerged portion of the floating body:

L”fﬁu b

J"":L‘-';_:. body

FH =W — fi'.lr}{:uauh - f}Ll‘-':_,_‘.l'f'i'lL]I‘-.'li‘: L""rll.llnl —

Floating
p < py body

| &

Fluid

-

Suspended body
(neutrally buoyant)

Sinking

i >
Pr -~ body

L"Jrll.:-lu | I'Ir}._."

A solid body dropped
into a fluid will sink,
float, or remain at rest
at any point in the
fluid, depending on its
average density
relative to the density
of the fluid.
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The altitude of a hot air
balloon is controlled by the
temperature difference
between the air inside and
outside the balloon, since
warm air is less dense than
cold air. When the balloon
IS neither rising nor falling,
the upward buoyant force
exactly balances the
downward weight.
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u
m EXAMPLE 3-10 Measuring Specific Gravity by a Hydrometer

m //— Hydrometer
m If you have a seawater aquarium, you have probably used a small cylindrical /

W glass tube with a lead-weight at its bottom to measure the salinity of the
water by simply watching how deep the tube sinks. Such a device that floats
in a vertical position and is used to measure the specific gravity of a liquid
Is called a hydrometer (Fig. 3-45). The top part of the hydrometer extends
above the liquid surface, and the divisions on it allow one to read the spe-
cific gravity directly. The hydrometer is calibrated such that in pure water
it reads exactly 1.0 at the air-water interface. (a) Obtain a relation for the
specific gravity of a liquid as a function of distance Az from the mark cor-
responding to pure water and (b) determine the mass of lead that must be
poured into a 1-cm-diameter, 20-cm-long hydrometer if it is to float halfway
(the 10-cm mark) in pure water.

SOLUTION The specific gravity of a liquid is to be measured by a hydrom-
eter. A relation between specific gravity and the vertical distance from the
reference level is to be obtained, and the amount of lead that needs to be
added into the tube for a certain hydrometer is to be determined.

Assumptions 1 The weight of the glass tube is negligible relative to the
weight of the lead added. 2 The curvature of the tube bottom is disregarded.

Properties We take the density of pure water to be 1000 kg/m?.

Analysis (a) Noting that the hydrometer is in static equilibrium, the buoyant
force Fg exerted by the liguid must always be equal to the weight W of the
hydrometer. In pure water (subscript w), we let the vertical distance between
the bottom of the hydrometer and the free surface of water be Zz, Setting
Fg = Win this case gives

Wh!r'dm = FE.W = ngusub = ngAZD (1)

where A is the cross-sectional area of the tube, and p,, is the density of pure
water.



In a fluid lighter than water (p; < p,), the hydrometer will sink deeper, and
the liquid level will be a distance of Az above z,. Again setting F; = W gives

Wh}'dm = FB,}“ - pfgusub - pfgﬂ(zﬂ T AZ} (2)

This relation is also valid for fluids heavier than water by taking Az to be a
negative guantity. Setting Egs. (1) and (2) here equal to each other since
the weight of the hydrometer is constant and rearranging gives

Pr Iy

pAZ, = Az, + Az SG, =
P.8AZy = Pr8A(Z, ) — 'f Py 7y + Az

which is the relation between the specific gravity of the fluid and Az. Note
that z, is constant for a given hydrometer and Az is negative for fluids
heavier than pure water.

(b) Disregarding the weight of the glass tube, the amount of lead that needs
to be added to the tube is determined from the requirement that the weight
of the lead be equal to the buoyant force. When the hydrometer is floating
with half of it submerged in water, the buoyant force acting on it is

FB — pwgusuh
Equating Fj to the weight of lead gives
W= mg — pwgusub
Solving for m and substituting, the mass of lead is determined to be

m=p V. . = p (7R ) = (1000 kg/m*)[7(0.005 m)*(0.1 m)] = 0.00785 kg

sub.

Discussion Note that if the hydrometer were required to sink only 5 cm in
water, the required mass of lead would be one-half of this amount. Also, the
assumption that the weight of the glass tube is negligible is questionable

since the mass of lead is only 7.85 g. 49



EXAMPLE 3-11 Weight Loss of an Object in Seawater

|
A crane is used to lower weights into the sea (density = 1025 kg/m?) for g
an underwater construction project (Fig. 3-46). Determine the tension in m

the rope of the crane due to a rectangular 0.4-m x 0.4-m X 3-m concrete
block (density = 2300 kg/m3) when it is (a) suspended in the air and (b)
completely immersed in water.

SOLUTION A concrete block is lowered into the sea. The tension in the
rope is to be determined before and after the block is in water.

Assumptions 1 The buoyant force in air is negligible. 2 The weight of the
ropes is negligible.
Properties The densities are given to be 1025 kg/m® for seawater and

2300 kg/m? for concrete.
Analysis (a) Consider a free-body diagram of the concrete block. The forces

acting on the concrete block in air are its weight and the upward pull action
(tension) by the rope. These two forces must balance each other, and thus
the tension in the rope must be equal to the weight of the block:

V =(04m)04m)3m) =048 m’

FT, air = W = Pcuncretegu
1 kN

——— | = 10.8 kN
1000 kg-mf’sz)

= (2300 kg/m?)(9.81 m/s*)(0.48 m3}(

(b) When the block is immersed in water, there is the additional force of
buoyancy acting upward. The force balance in this case gives

1 kN
1000 kg-mfsi) - 48N

Fy = p gV = (1025 kg/m?)(9.81 m/s?)(0.48 1113)(
Froymer = W — Fg =108 — 48 = 6.0 kN

Discussion Note that the weight of the concrete block, and thus the tension
of the rope, decreases by (10.8 — 6.0)/10.8 = 55 percent in water.

Air
Water
Concrete
block
|
B
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Stability of Immersed and
Floating Bodies

h o 4

(a) Stable
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Stability is easily (b) Neutrally stable
understood by
analyzing a ball
on the floor.

For floating bodies such as ships, stability
IS an important consideration for safety. (¢) Unstable



Fluid

A floating body possesses vertical

stability, while an immersed neutrally tFB
buoyant body is neutrally stable since it G B (a) Stable
does not return to its original position W‘
after a disturbance. g
Weight

FB
G$B (b) Neutrally stable

An immersed neutrally buoyant
body is (a) stable if the center of
gravity G is directly below the center
of buoyancy B of the body, (b)
neutrally stable if G and B are
coincident, and (c) unstable if G is
directly above B.

(¢) Unstable




Restoring moment

Weight

When the center of gravity G of an immersed
neutrally buoyant body is not vertically
aligned with the center of buoyancy B of the
body, it is not in an equilibrium state and
would rotate to its stable state, even without
any disturbance.

A ball in a trough between
two hills is stable for small
disturbances, but unstable
for large disturbances.
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Metacenter ~

Iy
|

0 -
. Restoring : mzﬁrﬁ:;nl‘tmng
f moment /
(a) Stable (h) Stable (¢) Unstable

A floating body is stable if the body is bottom-heavy and thus the center of
gravity G is below the centroid B of the body, or if the metacenter M is above
point G. However, the body is unstable if point M is below point G.

Metacentric height GM: The distance between the center of gravity
G and the metacenter M—the intersection point of the lines of action
of the buoyant force through the body before and after rotation.

The length of the metacentric height GM above G is a measure of the

stability: the larger it is, the more stable is the floating body. 4



3—7 m FLUIDS IN RIGID-BODY MOTION

Pressure at a given point has the
same magnitude in all directions, and
thus it is a scalar function. l

?:¢

In this section we obtain relations for
the variation of pressure in fluids

dP -:f’"

+— — |dxdy

¢
i

dz

moving like a solid body with or
without acceleration in the absence of
any shear stresses (i.e., no motion
between fluid layers relative to each
other). d

—

oF = oém + d

om = pdV = p dx dv dz

. 0P dz JP dz oP

oFy . P———)dxdv—|P+ dxdy = ———dxdydz
av 2 : 2 d?

. oP - oP

oFg = ———dxdydz and oFg, = ——dxdydz

ox R ady
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SFs = 8Fsi + 8Fs,j + 8Fs _k

oP—- oP—- oP- =
= —(— i +— ] +— ﬁ,) dxdydz = —VPdxdydz
0x dy 0z

_GP?+G_10—> dPE

VP
ax ay T dz

1

oFp ., = —gSmE = —pg dx dy dzk

oF = 6F; + 6Fy = —(VP + pgk) dx dy dz

Rigid-body motion of fluids: VP + ng = —pa

6'P+ oP - “PE—F k @i+ N M

— i - - = —pla, E a a-

Ix m ]+ oz PE P J‘

R 0P oP oP

Accelerating fluids: —= —pa,, — = —pa,, and — = —p(g + a,)

0x T 9y - a2 '
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Special Case 1: Fluids at Rest

For fluids at rest or moving on a straight path at constant velocity, all
components of acceleration are zero, and the relations reduce to
H_P dP

o _ b 0 |
— =0, —=0, and —= —pg
0x v dz ’

Fluids at rest:

The pressure remains constant in any
horizontal direction (P is independent of
x and y) and varies only in the vertical T
direction as a result of gravity [and thus
P = P(z)]. These relations are applicable
for both compressible and
Incompressible fluids.

A glass of water at rest is a special
case of a fluid in rigid-body motion. If
the glass of water were moving at
constant velocity in any direction, the
hydrostatic equations would still apply.




Special Case 2: Free Fall of a Fluid Body

A freely falling body accelerates under the influence of gravity. When the air
resistance is negligible, the acceleration of the body equals the gravitational
acceleration, and acceleration in any horizontal direction is zero. Therefore,
a,=a,=0anda, =-g.

i) )
Free-falling fluids: S -

0 —5 P = constant

dx  ady az
In a frame of reference moving with < ET
the fluid, it behaves like it is in an
environment with zero gravity. Also,
the gage pressure in a drop of liquid P, P,
in free fall is zero throughout. o :
h| Liquid, p h| Liquid, p
Y 2 ]
i PEZP] TPEZP]'l'Epgh

The effect of acceleration on the
pressure of a liquid during free

: (a) Free fall of a (b) Upward acceleration
fall and upward acceleration.

liquid of a liquid with a, = +g



Acceleration on a Straight Path

IP JP P
— = —pa,, — =0, and a—:_P(£+”z} l?

0x S0y Z
Free

surface

P = P(x, 2). dP =(0P/ox) dx + (0P/02) 2. sgpuf™

dP = —pa,dx — p(g + a;) dz a,
hf)
P, — Py = —pafx, —xy) — p(g T a2z, — 2y) z] oo
g—a
. . ) X
Pressure variation: pP = P{. — pax — p(g + a,)z - 3 -

Rigid-body motion of a liquid in a
linearly accelerating tank.
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da,
‘3‘:5 =Ly — Ls1 & T (xi
g+ a,
Constant
pressure
lines
. . ":"r: isobar ”_ﬁ.'
Surfaces of constant pressure: = ———— = constant
dx g+ a.
dz. . a.
.. “-jsobar X
Slope of isobars: Slope = = — = —tan 6
dx g +a,

Lines of constant pressure
(which are the projections of the
surfaces of constant pressure on
the xz-plane) in a linearly
accelerating liquid. Also shown is
the vertical rise.

Vertical rise of surface:
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|
m EXAMPLE 3-12 Overflow from a Water Tank During Acceleration

: An 80-cm-high fish tank of cross section 2 m X 0.6 m that is partially filled

m with water is to be transported on the back of a truck (Fig. 3-58). The truck
accelerates from O to 90 km/h in 10 s. If it is desired that no water spills
during acceleration, determine the allowable initial water height in the tank.
Would you recommend the tank to be aligned with the long or short side par-
allel to the direction of motion?

SOLUTION A fish tank is to be transported on a truck. The allowable water

height to avoid spill of water during acceleration and the proper orientation

are to be determined.

Assumptions 1 The road is horizontal during acceleration so that accelera-

tion has no vertical component (a, = 0). 2 Effects of splashing, braking,

shifting gears, driving over bumps, climbing hills, etc., are assumed to be

secondary and are not considered. 3 The acceleration remains constant. dx

Analysis We take the x-axis to be the direction of motion, the zaxis to be

the upward vertical direction, and the origin to be the lower left corner of the  —¢ -

tank. Noting that the truck goes from O to 90 km/h in 10 s, the acceleration i,_ i~
of the truck is
AV (90 — 0) km!h( 1 m/s ) ,, Water 80 cm
= = = 2.5m/s" k
=AY 10s  \3.6 km/h s e
The tangent of the angle the free surface makes with the horizontal is r

a 25
g+a 981 +0

tan 8 = = (.255 (and thus 8 = 14.3°)
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The maximum vertical rise of the free surface occurs at the back of the tank,
and the vertical midplane experiences no rise or drop during acceleration
since it is a plane of symmetry. Then the vertical rise at the back of the tank
relative to the midplane for the two possible orientations becomes

Case 1: The long side is parallel to the direction of motion:

Az, = (b)/2)tan @ = [(2 m)/2] X 0.255 = 0.255 m = 25.5 cm

Case 2: The short side is parallel to the direction of motion:

Az, = (by/2)tan 8 = [(0.6 m)/2] X 0.255 = 0.076 m = 7.6 cm

Therefore, assuming tipping is not a problem, the tank should definitely be
oriented such that its short side is parallel to the direction of motion. Emptying
the tank such that its free surface level drops just 7.6 cm in this case will
be adequate to avoid spilling during acceleration.

Discussion Note that the orientation of the tank is important in controlling
the vertical rise. Also, the analysis is valid for any fluid with constant den-
sity, not just water, since we used no information that pertains to water in
the solution.
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Rotation in a Cylindrical Container

Axis of

Consider a vertical cylindrical container partially rotation

filled with a liquid. The container is now rotated a | > @
about its axis at a constant angular velocity of . — |-

After initial transients, the liquid will move as a Eree |
rigid body together with the container. There is surface
no deformation, and thus there can be no shear \\ \X
stress, and every fluid particle in the container ' __“;__I_%_/_
moves with the same angular velocity. ,
Lg | c
oP 5 aP 0 ’ oP h
— = pro-, — =0, anc — = —pg 0 i
or F a0 0z Pé
P = P(, ) dP = (dP/or)dr + (9P/dz)dz T
dP = pro* dr — pg dz ! lr | - p
L1 R
d-’:imhar _ rmg g ‘
dr g Rigid-body motion of a
w? liquid in a rotating vertical
Surfaces of constant Pressure.  Zioopar — - e+ (-.11 Cy|indrica| container.
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w’

g=—r +h,

g
R R /)2 ; , W R2

V= 2wz rdr = 2 —r°+ h.|rdr=mR + h,
r=0 r=0 28 48’

V = 7R*h,

h= o — K
[ 0 4g
. '5-'):1 9 3
Free surface: 7. = hy — — (R° — 2r~)

4g



?

The 6-meter spinning liquid-mercury
mirror of the Large Zenith Telescope
located near Vancouver, British
Columbia.

QD{U

i
Free ! l
surface |

| _

Surfaces of constant
pressure in a rotating
liquid.
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Maximum height difference: AZ; pax = Z,(R) — 2,(0) = — R°
or

2
) . 9 i ___ p(!'_.}‘_ - -
dP = pro”dr — pg dz. Py = Py=—"—(r; = ri) — psg(za = 21)
o pow*
Pressure variation: P = P, + e — pgz

Note that at a fixed radius, the pressure varies hydrostatically in the
vertical direction, as in a fluid at rest.

For a fixed vertical distance z, the pressure varies with the square of the
radial distance r, increasing from the centerline toward the outer edge.

In any horizontal plane, the pressure difference between the center and
edge of the container of radius R is

AP = pw’R?*/2
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EXAMPLE 3-13 Rising of a Liquid During Rotation

A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Fig. 3-62, g
is partially filled with 50-cm-high liquid whose density is 850 kg/m3. Now the m
cylinder is rotated at a constant speed. Determine the rotational speed at which
the liquid will start spilling from the edges of the container.

SOLUTION A vertical cylindrical container partially filled with a liquid is
rotated. The angular speed at which the liquid will start spilling is to be
determined.

Assumptions 1 The increase in the rotational speed is very slow so that the
liquid in the container always acts as a rigid body. 2 The bottom surface of
the container remains covered with liquid during rotation (no dry spots).
Analysis Taking the center of the bottom surface of the rotating vertical
cylinder as the origin (r = 0, z = 0), the equation for the free surface of the
liquid is given as

Free

surface -

. | S
z.= h, — — (R?> — 2r?
5 0 4‘3’ r ) Iz
h[!l
Then the vertical height of the liquid at the edge of the container where r =
R becomes o
msz L ~ 1
Z(R) = h, +
ot L
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where h; = 0.5 m is the original height of the liquid before rotation. Just
before the liquid starts spilling, the height of the liquid at the edge of the
container equals the height of the container, and thus z(R) = H = 0.6 m.
Solving the last equation for @ and substituting, the maximum rotational
speed of the container is determined to be

- Xélg(H —hy) ff4[9,8] m/s2)[(0.6 — 0.5) m]
TN RN (0.1 m)?

= 19.8 rad/s

Noting that one complete revolution corresponds to 27 rad, the rotational
speed of the container can also be expressed in terms of revolutions per
minute (rpm) as

0 19.8 rad/s [ 60s
2w 2 rad!rev\ 1 min

) = 189 rpm

Therefore, the rotational speed of this container should be limited to 189 rpm
to avoid any spill of liquid as a result of the centrifugal effect.

Discussion Note that the analysis is valid for any liquid since the result is
independent of density or any other fluid property. We should also verify that
our assumption of no dry spots is valid. The liquid height at the center is

QRZ

4g

z,(0) = hy — =04 m

Since z(0) is positive, our assumption is validated.
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