


Objectives

Understand the role of the material derivative in
transforming between Lagrangian and Eulerian
descriptions

Distinguish between various types of flow
visualizations and methods of plotting the
characteristics of a fluid flow

Appreciate the many ways that fluids move and
deform

Distinguish between rotational and irrotational
regions of flow based on the flow property vorticity

Understand the usefulness of the Reynolds
transport theorem



4-1 m LAGRANGIAN AND EULERIAN DESCRIPTIONS

Kinematics: The study of motion.
Fluid kinematics: The study of how fluids flow and how to describe fluid motion.

There are two distinct ways to describe motion: Lagrangian and Eulerian
Lagrangian description: To follow the path of individual objects.

This method requires us to track the position and velocity of each individual
fluid parcel (fluid particle) and take to be a parcel of fixed identity.

\\\ Va
Vs
Ve
Xy

E}B »
- : < 2
With a small number of objects, such In the Lagrangian description, one
as billiard balls on a pool table, must keep track of the position and

individual objects can be tracked. velocity of individual particles.



A more common method is Eulerian description of fluid motion.

In the Eulerian description of fluid flow, a finite volume called a flow domain
or control volume is defined, through which fluid flows in and out.

Instead of tracking individual fluid particles, we define field variables,
functions of space and time, within the control volume.

The field variable at a particular location at a particular time is the value of
the variable for whichever fluid particle happens to occupy that location at
that time.

For example, the pressure field is a scalar field variable. We define the
velocity field as a vector field variable.

Pressure field: P=Px,v.2.1)
) _ —* —*

Velocity field: V=Vix.v,z,0

Aceeleration field: a=a(x,y,z,1)

Collectively, these (and other) field variables define the flow field. The
velocity field can be expanded in Cartesian coordinates as

V=W v.w)=ulxy z.0)i +vxy,z ﬂf +w(x, v, 2, DK



Control volume

\ _______ . * In the Eulerian description we don't
___________ really care what happens to individual
fluid particles; rather we are
U aro Vi y. 2 1) concerned with the pressure, velocity,
\ ' ' acceleration, etc., of whichever fluid
\ particle happens to be at the location

of interest at the time of interest.

« While there are many occasions in
which the Lagrangian description is
useful, the Eulerian description is
often more convenient for fluid
mechanics applications.

« Experimental measurements are

generally more suited to the Eulerian
description.

(a) In the Eulerian description, we define field variables, such as the pressure field and
the velocity field, at any location and instant in time. (b) For example, the air speed
probe mounted under the wing of an airplane measures the air speed at that location.



N
m EXAMPLE 4-1 A Steady Two-Dimensional Velocity Field

|

m A steady, incompressible, two-dimensional velocity field is given by
- V=(@v)=(05+08):i + (1.5 — 0.8y)j (n
where the x- and y-coordinates are in meters and the magnitude of velocity is in
m/s. A stagnation point is defined as a point in the flow field where the velocity
is zero. (a) Determine if there are any stagnation points in this flow field and, if
so, where? (b) Sketch velocity vectors at several locations in the domain between
x=—-2mto2Z2mandy= 0 mto 5 m; qualitatively describe the flow field.

Analysis (a) Since Visa vector, all its components must equal zero in
order for V itself to be zero. Using Eq. 4-4 and setting Eqg. 1 equal to zero,

u=05+08x=0 — x = —0625m

Stagnation point:
v=15—-08=0 — y=18/5m

Yes. There is one stagnation point located at x = —0.625 m, y = 1.875 m.

(b) The x- and y-components of velocity are calculated from Eq. 1 for several
(x, y) locations in the specified range. For example, at the point (x = 2 m,
y=3m), u= 2.10m/s and v = —0.900 m/s. The magnitude of velocity
(the speed) at that point is 2.28 m/s. At this and at an array of other loca-
tions, the velocity vector is constructed from its two components, the results
of which are shown in Fig. 4-4. The flow can be described as stagnation
point flow in which flow enters from the top and bottom and spreads out to
the right and left about a horizontal line of symmetry at y = 1.875 m. The
stagnation point of part (&) is indicated by the blue circle in Fig. 4—4.

If we look only at the shaded portion of Fig. 4-4, this flow field models a
converging, accelerating flow from the left to the right. Such a flow might be
encountered, for example, near the submerged bell mouth inlet of a hydro-
electric dam (Fig. 4-5). The useful portion of the given velocity field may be
thought of as a first-order approximation of the shaded portion of the physi-
cal flow field of Fig. 4-5.

Discussion 1t can be verified from the material in Chap. 9 that this flow
field is physically valid because it satisfies the differential equation for
conservation of mass.



A Steady Two-Dimensional Velocity Field
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Region in which the
velocity field 1s modeled

Streamlines

Flow field near
the bell mouth
inlet of a
hydroelectric
dam; a portion of
the velocity field
of Example 4-1
may be used as
a first-order
approximation of
this physical flow
field.

Velocity vectors for the velocity field of Example 4-1. The scale is shown by
the top arrow, and the solid black curves represent the approximate shapes

of some streamlines, based on the calculated velocity vectors. The
stagnation point is indicated by the blue circle. The shaded region

represents a portion of the flow field that can approximate flow into an inlet. i



Acceleration Field

The equations of motion for fluid flow

(such as Newton’s second law) are
written for a fluid particle, which we
also call a material particle.

If we were to follow a particular fluid
particle as it moves around in the
flow, we would be employing the
Lagrangian description, and the

equations of motion would be directly

applicable.

For example, we would define the
particle’s location in space in terms
of a material position vector

(Xpartic|e(t), yparticle(t)’ Zparticle(t))-

Newton's second law:

Acceleration of a fluid particle:

ﬁ.

F particle =

Fluid particle at time ¢

Fluid particle at time 7 + drf

— —»
V =V

particle
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a]}:uticle
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(Xparticles Yparticle Zparticle)
particle .Yparticle- “particle Fpu_rlicle

Newton’s second law applied to a fluid
particle; the acceleration vector (purple
arrow) is in the same direction as the force
vector (green arrow), but the velocity vector
(blue arrow) may act in a different direction.
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Vparticle(r) = V('xparticle(r)* Tparricle('r)* Zparticle(r)* f)

— 5 —
- dvpartic]e dV dv(-xparticle* v particles < particles 4 )
particle dt dt dt

— — — i —
_ ﬂ g n aVv dxpmt]cle n gV dy particle n aV dzpm‘tic:]e
at dt dx particle dt 61‘ particle dt 0z particle dt

ﬂpartic]e(x‘ Vo2, 1) = dt N at . ox v ady " 02

Acceleration of a fluid particle expressed as a field variable:

d‘j’ EJV —> =

ax, y.z.1) = — = — V)V
dt r_n‘
dV Local (V. %)y Advective (convective)
gt acceleration acceleration

— ) = 0 -
Gradient or del operator: V= (f—ii) =7 =+ Jj 9 + ki
Z 0x dy 02



[‘T]J:ll'liC]E T d-rpartic]w }'rparticle + d‘*‘rparticle]

-
’

Fluid particle
T at time f + dt

-—dx

“*particle ’

Fluid particle at time ¢

{"Ipal‘[idE' }]partic]e}

When following a fluid particle, the x-

component of velocity, u, is defined as
dXparicie/dt. Similarly, v=dy,e/dt and
W:dzparticle
In two dimensions for simplicity.

The components of the
acceleration vector in cartesian
coordinates:

dut dut Jdu du
a,=—+u—+v—+w—
ot 0x dy 0z

dv v Jv dv

d, = + u +Uv—tw

T ot 0x ay 0Z
an aw ow ow

a,=—=+uUu—+v—+w-
Cot 0x ady 0z

/dt. Movement is shown here only

Flow of water through the nozzle of a
garden hose illustrates that fluid
particles may accelerate, even in a
steady flow. In this example, the exit
speed of the water is much higher than
the water speed in the hose, implying
that fluid particles have accelerated
even though the flow is steady. 10



Fluid particle /
at time t + At

Fluid particle
at time ¢

Ax

=Y

FIGURE 4-11
A first-order finite difference
FIGURE 4-10 approximation for derivative dg/dx

Residence time At is defined as the 1s simply the change in dependent
time it takes for a fluid particle to variable (¢g) divided by the change
travel through the nozzle from inlet in independent variable (x).

to outlet (distance Ax).
il



Material Derivative vV _ V., o3

: )V
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The total derivative operator d/dt in this equation is given a special name, the
material derivative; it is assigned a special notation, D/Dt, in order to
emphasize that it is formed by following a fluid particle as it moves through
the flow field.

Other names for the material derivative include total, particle, Lagrangian,
Eulerian, and substantial derivative.

r+ 3 dt

The material derivative D/Dt is defined by following

a fluid particle as it moves throughout the flow field.

In this illustration, the fluid particle is accelerating to

the right as it moves up and to the right. 12



D d B 0 - =

Material derivative: —=—=—+ (V- V)
Dt dt ol
Material acceleration: ax, v,z. 1) = = =—+(V-V)V
Dt dt ot

DP _dP P & - 2
Dt dt at

Material derivative of pressure:

ateriz 0CZ ear® The material derivative
derivative D/Dt is composed of a
local or unsteady part
and a convective or
advective part.

13




N
EXAMPLE 4-3 Material Acceleration of a Steady Velocity Field m

Consider the steady, incompressible, two-dimensional velocity field of :
Example 4-1. (a) Calculate the material acceleration at the point (x = 2 m, m
y = 3 m). (b) Sketch the material acceleration vectors at the same array of
x- and y-values as in Example 4-1.

Analysis (a) Using the velocity field of Eq. 1 of Example 4-1 and the equa-
tion for material acceleration components in Cartesian coordinates (Eq. 4-11),
we write expressions for the two nonzero components of the acceleration
vector:

dul did Jul dud
a =— + H— + v— + w—
of dx dy dZ

A —_— A

— 0+ (0.5 + 0.80)(0.8) + (1.5 — 0.8y)(0) + 0 = (0.4 + 0.64x) m/s>

duv duv dr dv

a, = — T u— + v— + w—

: ot dx dy dz
— —h

= 0+ (0.5 + 08x)(0) + (1.5 — 0.8y)(—0.8) + 0 = (—1.2 + 0.64y) m/s?

At the point (x =2 m, y = 3 m), a, = 1.68 m/s? and a, = 0.720 m/s2.
(b) The equations in part (a) are applied to an array of x- and y-values in the
flow domain within the given limits, and the acceleration vectors are plotted

in Fig. 4-14.

14



Material Acceleration of a Steady Velocity Field

o

-2

Scale:

10 m/s2

A

rrrrjprrrigil

IIIlIIII

Acceleration vectors for the
velocity field of Examples 4—
1 and 4-3. The scale is
shown by the top arrow, and
the solid black curves
represent the approximate
shapes of some streamlines,
based on the calculated
velocity vectors. The
stagnation point is indicated
by the red circle.
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4-2 m FLOW PATTERNS AND FLOW VISUALIZATION

* Flow visualization: The
visual examination of flow
field features.

*  While quantitative study of
fluid dynamics requires
advanced mathematics, much
can be learned from flow
visualization.

* Flow visualization is useful
not only in physical

experiments but in numerical  gpinning baseball. The late F. N. M.

solutions as well Brown devoted many years to developing
[computational fluid and using smoke visualization in wind
dynamics (CFD)]. tunnels at the University of Notre Dame.

* Infact, the very firstthingan  Here the flow speed is about 23 m/s and
engineer using CFD does the ball is rotated at 630 rpm.

after obtaining a numerical
solution is simulate some
form of flow visualization. 16



Streamlines and Streamtubes

Streamline: A curve that is ~..
everywhere tangent to the Point (x +dx,y+dy) V
Instantaneous local velocity -
vector. Streamline

Streamlines are useful as
Indicators of the
Instantaneous direction of ‘ _
fluid motion throughout the ! Point (x, y)
flow field. L

For example, regions of
recirculating flow and
separation of a fluid off of a
solid wall are easily identified
by the streamline pattern.

For two-dimensional flow in the xy-
plane, arc length dr = (dx, dy) along
a streamline 1s everywhere tangent to
the local instantaneous velocity vector
V = (u, v).
Streamlines cannot be directly

observed experimentally

except in steady flow fields. po



Consider an infinitesimal arc length dr = = dxi + (ﬁ; + d*ﬁ almw a
streamline; d7” must be parallel to the local velocity vector V=ui + zg + wk
by definition of the streamline. By simple geometric arguments using simi-
lar triangles, we know that the components of dr’ must be proportional to
those of V (Fig. 4-16). Hence,

. : , dr dx dv dz
Equation for a streamline: === (4-15)
V i U W

where dr is the magnitude of dr and V is the speed, the magnitude of veloc-
ity vector V. Equation 4—15 is illustrated in two dimensions for simplicity in
Fig. 4-16. For a known velocity field, we integrate Eq. 4—15 to obtain equa-
tions for the streamlines. In two dimensions, (x, v), (#, v), the following dif-
ferential equation 1s obtained:

dy v
Streamline in the xy-plane: (—) = — (4-16)
dx along a streamline u

In some simple cases, Eq. 4-16 may be solvable analytically; in the general
case, it must be solved numerically. In either case, an arbitrary constant of
integration appears. Each chosen value of the constant represents a different
streamline. The family of curves that satisfy Eq. 4-16 therefore represents
streamlines of the flow field.



V=uv)=(05+08x)i + (1.5 —0.8y)]

EXAMPLE 44 Streamlines in the xy-Plane—An Analytical
Solution

For the steady, incompressible, two-dimensional velocity field of Example 4-1,
plot several streamlines in the right half of the flow (x = 0) and compare to
the velocity vectors plotted in Fig. 4-4.

SOLUTION An analytical expression for streamlines is to be generated and
plotted in the upper-right quadrant.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no z-component of velocity and no variation of u or v
with z.

Analysis Equation 4-16 is applicable here; thus, along a streamline,

dy v 1.5 — 0.8y
dx u 0.5 + 0.8x

We solve this differential equation by separation of variables:
dy B dx J dy B J dx
1.5 —08y 05+ 0.8x 1.5 — 0.8y 0.5 + 0.8x
After some algebra, we solve for y as a function of x along a streamline,

- C
Y 708005 + 0.81)

+ 1.875

where C is a constant of integration that can be set to various values in order
to plot the streamlines. Several streamlines of the given flow field are shown
in Fig. 4-17.

19



Streamlines for a steady, incompressible, two-dimensional velocity field
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V= (u,v)=(0.5+ 0.8x)
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Streamlines (solid black
curves) for the velocity field
of Example 4-4; velocity
vectors (blue arrows) are
superimposed for
comparison.

The agreement is excellent in
the sense that the velocity
vectors point everywhere
tangent to the streamlines.
Note that speed cannot be
determined directly from the
streamlines alone.
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A streamtube consists of a bundle of
streamlines much like a
communications cable consists of a
bundle of fiber-optic cables.

Streamlines

Since streamlines are everywhere
parallel to the local velocity, fluid
cannot cross a streamline by
definition.

_ p? Streamtube
Fluid within a streamtube must A st i L T
remain there and cannot cross the streamtube consists of a bundie

boundary of the streamtube. of individual streamlines.

Both streamlines and
streamtubes are
instantaneous
guantities, defined at
a particular instant in (@) b)

time according to the | _ R :
velocity field at that n an iIncompressible flow tield, a streamtube

instant. (a) decreases in diameter as the flow
accelerates or converges and (b) increases in
diameter as the flow decelerates or diverges. 2t




Pathlines Fluid particle at f =ty

Pathline: The actual path REAGEN
traveled by an individual fluid Pathline -~

particle over some time period. RAR ____..*

A pathline is a Lagrangian _ _

concept in that we simply follow Fluid particle at £ = feng
the path of an individual fluid Fluid particle at some

particle as it moves around in intermediate time

the flow field. A pathline is formed by following the actual
Thus, a pathline is the same as path of a fluid particle.

the fluid particle’s material : : _
POSition VeCtor (Xoice(®), Pathlines produced by white tracer particles suspended

Vearice(t)s Zoarnie(t)) traced out in water and captured by time-exposure photography;
Of,aé'rcgomepﬁrrﬁtee time interval. &S Waves pass horizontally, each particle moves in an

elliptical path during one wave period.
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Particle image velocimetry (PIV): A modern experimental technique that
utilizes short segments of particle pathlines to measure the velocity field over
an entire plane in a flow.

Recent advances also extend the technique to three dimensions.

In PIV, tiny tracer particles are suspended in the fluid. However, the flow is
illuminated by two flashes of light (usually a light sheet from a laser) to
produce two bright spots (recorded by a camera) for each moving particle.

Then, both the magnitude and direction of the velocity vector at each patrticle
location can be inferred, assuming that the tracer particles are small enough

that they move with the fluid. o s e I | 0
Cleaeers N
At e N | /) !
(s NSREY
0.1 YEr \\ B N
Stereo PIV measurements of the wing tip // »/,} /f‘fl A 0.96 ¢
vortex in the wake of a NACA-66 airfoil at = _f ‘ / /é&f/ - .
angle of attack. Color contours denote the g5 | o i / o004
local vorticity, normalized by the minimum } \\ & /i: ///;/,;é -
value, as indicated in the color map. Vectors BT O Yy es e
denote fluid motion in the plane of 0: § § §§§;\:ﬁ'}";§§§§§;§§//2
measurement. The black line denotes the MRS :::j:,,///////f;;ﬁfé
location of the upstream wing trailling edge. S8 =SS e s
Coordinates are normalized by the airfoil ~— Fv e s e

chord, and the origin is the wing root. 0.1 —0.05 0 0.05
Zlc



Pathlines can also be calculated numerically for a known velocity field.
Specifically, the location of the tracer particle 1s integrated over time from

. . —* . . .
some starting location x,, and starting time 7, to some later time 7.

I
Tracer particle location at time t: X = Xyt T |' V dt (11-17)

'rstart

When Eq. 11-17 is calculated for 7 between 7, and 7,4, a plot of X (1) is the
pathline of the fluid particle during that time interval, as illustrated in Fig.
[1-15. For some simple flow fields, Eq. 11-17 can be integrated analyti-
cally. For more complex flows, we must perform a numerical integration.

[f the velocity field is steady, individual fluid particles will follow stream-
lines. Thus, for steady flow, pathlines are identical to streamlines.
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Streaklines

Streakline: The locus of fluid
particles that have passed
sequentially through a
prescribed point in the flow.

Streaklines are the most
common flow pattern
generated in a physical
experiment.

If you insert a small tube into
a flow and introduce a
continuous stream of tracer
fluid (dye in a water flow or
smoke in an air flow), the
observed pattern is a
streakline.

L Dye or smoke

Injected fluid particle

Streakline

Object

A streakline is formed by continuous
Introduction of dye or smoke from a point in
the flow. Labeled tracer particles (1 through

8) were introduced sequentially.
25



Streaklines produced by
colored fluid introduced
upstream; since the flow is
steady, these streaklines
are the same as
streamlines and pathlines.

Streaklines, streamlines, and pathlines are identical in steady flow but
they can be quite different in unsteady flow.

The main difference is that a streamline represents an instantaneous
flow pattern at a given instant in time, while a streakline and a
pathline are flow patterns that have some age and thus a time history
associated with them.

A streakline is an instantaneous snapshot of a time-integrated flow
pattern.

A pathline, on the other hand, is the time-exposed flow path of an

individual particle over some time period. .



In the figure, streaklines are introduced from a smoke wire located just
downstream of a circular cylinder of diameter D aligned normal to the plane of
view.

When multiple streaklines are introduced along a line, as in the figure, we
refer to this as a rake of streaklines.

The Reynolds number of the flow is Re = 93.

Cylinder

(.b\

Cylinder

Smoke streaklines introduced by a smoke wire at two different locations in the
wake of a circular cylinder: (a) smoke wire just downstream of the cylinder and
(b) smoke wire located at x/D = 150. The time-integrative nature of streaklines,
IS clearly seen by comparing the two photographs.



Because of unsteady vortices shed in an
alternating pattern from the cylinder, the
smoke collects into a clearly defined
periodic pattern called a Karman vortex

street.

A similar pattern can be seen at much
larger scale in the air flow in the wake of

an island.

Karman vortices visible in
the clouds in the wake of
Alexander Selkirk Island in
the southern Pacific Ocean.




For a known velocity field, a streakline can be generated numerically. We
need to follow the paths of a continuous stream of tracer particles from the
time of their injection into the flow until the present time, using Eq. 4-17.
Mathematically, the location of a tracer particle is integrated over time from

the time of its injection #,. . to the present time 7., Equation 4-17
becomes

r f|1|-._~,,,_~|-,|
Integrated tracer particle location: X = Xipiection T V dt (4-18)

.'I

inject

In a complex unsteady flow, the time integration must be performed numer-
ically as the velocity field changes with time. When the locus of tracer par-
ticle locations at r = 7., 1s connected by a smooth curve, the result is the
desired streakline.

I
— — —
Tracer particle location at time t: X = Xt T |' V dt (4-17)

Tstarl
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Comparison of Flow Patterns in an Unsteady Flow

V=(u,v)=(0.5+ 0.8%)i + (1.5 + 2.5 sin(wt) — 0.8y)/

5 — \\ \\ \\ An unsteady, incompressible,
: two-dimensional velocity field
A 2 h \\\\\R y
. :\ \ SC‘Q\Q ~ |
: “-‘-"‘"‘--———__
vy, 3 ~
- - \ __\"‘3,‘__.:-
7 .."“'-_ R
n —ﬂ-—- . .
I — —— Streamlines, pathlines, and
. 4 / —— streaklines for the oscillating
0 ’ - — ity fi
_ Bz — velocity field of Example 4-5.
. The streaklines and pathlines
—1 T T T T [T TT T [T T T T[T T T T [TTTT]T1 arewavybecauseoftheir
0 l 2 3 1 5 integrated time history, but the
X streamlines are not wavy since
——>—— Streamlines at 7 =2 s they represent an
Pathlines for0<r<2s Instantaneous snapshot of the

30
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Timeline at r=0

Timelines

Timeline: A set of adjacent fluid
particles that were marked at the same
(earlier) instant in time. Flow l Timeline
E ——

. L . 5 atr=
Timelines are particularly useful in wr=h

situations where the uniformity of a flow
(or lack thereof) is to be examined.

Timeline at 1 = 15

Timelines are formed by
marking a line of fluid
particles, and then
watching that line move
| (and deform) through

B the flow field; timelines
8 are shown att=0, t;, t,,
B and t,.

Timelines produced by a hydrogen bubble wire are used to visualize the
boundary layer velocity profile shape. Flow is from left to right, and the
hydrogen bubble wire is located to the left of the field of view. Bubbles
near the wall reveal a flow instability that leads to turbulence.
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Refractive Flow Visualization Techniques

It is based on the refractive property of light waves.

The speed of light through one material may differ somewhat from
that in another material, or even in the same material if its density
changes. As light travels through one fluid into a fluid with a

different index of refraction, the light rays bend (they are refracted).

Two primary flow visualization techniques that utilize the fact that
the index of refraction in air (or other gases) varies with density: the
shadowgraph technique and the schlieren technique.

Interferometry is a visualization technique that utilizes the related
phase change of light as it passes through air of varying densities
as the basis for flow visualization.

These techniques are useful for flow visualization in flow fields
where density changes from one location in the flow to another,
such as such as natural convection flows (temperature differences
cause the density variations), mixing flows (fluid species cause the
density variations), and supersonic flows (shock waves and
expansion waves cause the density variations).

32



Unlike flow visualizations involving streaklines,
pathlines, and timelines, the shadowgraph and
schlieren methods do not require injection of a
visible tracer (smoke or dye).

Rather, density differences and the refractive
property of light provide the necessary means
for visualizing regions of activity in the flow
field, allowing us to “see the invisible.”

The image (a shadowgram) produced by the
shadowgraph method is formed when the
refracted rays of light rearrange the shadow
cast onto a viewing screen or camera focal
plane, causing bright or dark patterns to appear
in the shadow.

The dark patterns indicate the location where
the refracted rays originate, while the bright
patterns mark where these rays end up, and
can be misleading.

As a result, the dark regions are less distorted
than the bright regions and are more useful in
the interpretation of the shadowgram.

s

Shadowgram of a 14.3 mm sphere
in free flight through air at Ma 3.0.
A shock wave is clearly visible in
the shadow as a dark band that
curves around the sphere and is
called a bow wave (see Chap. 12).
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A shadowgram is not a true optical image; it
IS, after all, merely a shadow.

A schlieren image, involves lenses (or
mirrors) and a knife edge or other cutoff
device to block the refracted light and is a
true focused optical image.

Schlieren imaging is more complicated to
set up than is shadowgraphy but has a
number of advantages.

A schlieren image does not suffer from
optical distortion by the refracted light rays.

Schlieren imaging is also more sensitive to
weak density gradients such as those
caused by natural convection or by gradual
phenomena like expansion fans in
supersonic flow. Color schlieren imaging
technigues have also been developed.

One can adjust more components in a
schlieren setup.

| '

Schlieren image of natural

convection due to a barbeque grill.
34



Surface Flow Visualization Techniques

The direction of fluid flow immediately above a solid surface
can be visualized with tufts—short, flexible strings glued to the
surface at one end that point in the flow direction.

Tufts are especially useful for locating regions of flow
separation, where the flow direction suddenly reverses.

A technique called surface oil visualization can be used for
the same purpose—aoll placed on the surface forms streaks
called friction lines that indicate the direction of flow.

If it rains lightly when your car is dirty (especially in the winter
when salt is on the roads), you may have noticed streaks along
the hood and sides of the car, or even on the windshield.

This is similar to what is observed with surface oil visualization.

Lastly, there are pressure-sensitive and temperature-sensitive
paints that enable researchers to observe the pressure or
temperature distribution along solid surfaces.
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4-3 m PLOTS OF FLUID FLOW DATA

Regardless of how the results are obtained (analytically,
experimentally, or computationally), it is usually necessary to plot flow
data in ways that enable the reader to get a feel for how the flow
properties vary in time and/or space.

You are already familiar with time plots, which are especially useful in
turbulent flows (e.g., a velocity component plotted as a function of
time), and xy-plots (e.g., pressure as a function of radius).

In this section, we discuss three additional types of plots that are
useful in fluid mechanics—

profile plots, vector plots, and contour plots.
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Profile Plots

A profile plot indicates how the value of a scalar property
varies along some desired direction in the flow field.

A y

In fluid mechanics, profile plots of any
scalar variable (pressure, temperature,
density, etc.) can be created, but the most
common one used in this book is the
velocity profile plot.

Since velocity is a vector quantity, we
usually plot either the magnitude of velocity

or one of the components of the velocity
vector as a function of distance in some
desired direction. A-

(a)

=Y

Profile plots of the horizontal

component of velocity as a

YYYYVYYY

function of vertical distance: flow

in the boundary layer growing

along a horizontal flat plate: (a)
standard profile plot and (b)

profile plot with arrows. (b)

=Y



Vector Plots

Avector plot is an array of arrows indicating
the magnitude and direction of a vector
property at an instant in time.

Streamlines indicate the direction of the
instantaneous velocity field, they do not directly
indicate the magnitude of the velocity (i.e., the
speed).

A useful flow pattern for both experimental and
computational fluid flows is thus the vector plot, which
consists of an array of arrows that indicate both
magnitude and direction of an instantaneous vector

property.

Vector plots can also be generated from
experimentally obtained data (e.g., from PIV

measurements) or numerically from CFD calculations.

Fig. 4-4: Velocity vector plot
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Fig. 4-14: Acceleration vector plot. -

Both generated analytically.
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Results of CFD calculations of a two-
dimensional flow field consisting of
free-stream flow impinging on a block
of rectangular cross section.

(a) streamlines,

(b) velocity vector plot of the upper
half of the flow, and

(c) velocity vector plot, close-up view
revealing more details in the separated
flow region.
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A contour plot shows curves of constant Contour Plots
values of a scalar property (or magnitude of
a vector property) at an instant in time.

Contour plots (also called isocontour plots) are
generated of pressure, temperature, velocity
magnitude, species concentration, properties of
turbulence, etc.

A contour plot can quickly reveal regions of high
(or low) values of the flow property being studied.

Symmetry plane

(a)

A contour plot may consist simply of curves
indicating various levels of the property; this is
called a contour line plot.

Alternatively, the contours can be filled in with
either colors or shades of gray; this is called a
filled contour plot.

Contour plots of the pressure field due to flow

Impinging on a block, as produced by CFD

calculations; only the upper half is shown due

to symmetry; (a) filled color scale contour plot and

(b) contour line plot where pressure values are %, Symmetry plane
displayed in units of Pa gage pressure. (b)




4—-4 m OTHER KINEMATIC DESCRIPTIONS

Types of Motion or Deformation
of Fluid Elements

In fluid mechanics, an element may undergo four
fundamental types of motion or deformation:

(a) translation, (b) rotation,

(c) linear strain (also called extensional strain), and
(d) shear strain.

All four types of motion or deformation usually occur
simultaneously.

It is preferable in fluid dynamics to describe the motion
and deformation of fluid elements in terms of rates
such as

velocity (rate of translation),

angular velocity (rate of rotation),

linear strain rate (rate of linear strain), and

shear strain rate (rate of shear strain).
In order for these deformation rates to be useful in

the calculation of fluid flows, we must express them in
terms of velocity and derivatives of velocity.
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Fundamental types of fluid

element motion or

deformation: (a) translation,

(b) rotation, (c) linear st{ain,
1]

and (d) shear strain.



A vector is required in order to fully describe the rate of translation in three
dimensions. The rate of translation vector is described mathematically as
the velocity vector.

Rate of translation vector in Cartesian coordinates:

I
V=ui+ f-"j + wk tt“"&ri A
\ 1, \
Rate of rotation (angular velocity) at a 1‘; /E \\\ R
point: The average rotation rate of two \ : v o
initially perpendicular lines that intersect at Line b—\ \a
that point. : f
| P’ L———x ——————
Rate of rotation of fluid | Lineb Line a
element about pointP Y| Fluid element
d (ﬂ*ﬂ + (1’;;,) 1 (fﬁx‘ EH!) / at time 1,
@ dt 2 -2 \ox ay *—
/2
For a fluid element that translates and  p \
deforms as sketched, the rate of rotation at ® \ P S
point P is defined as the average rotation Line g L
rate of two initially perpendicular lines  Fluid element

. ) X
(inesaand b). attimer,



The rate of rotation vector is equal to the angular velocity vector.

Rate of rotation vector in Cartesian coordinates:

— 1 [ow v\~ | [du dw\~ | /ov du '\~
w=Z\"—-— )it \—— — )i t5\7- — )k
2 \dy 0Z 2\ 0z ox /. 2 \dx ay

Linear strain rate: The rate of increase in length per unit length.

Mathematically, the linear strain rate of a fluid element depends on the
initial orientation or direction of the line segment upon which we measure

the linear strain.

Linear strain rate in Cartesian coordinates:

ou v ow
Eoy = T Ey = e —

0x ay - Jz
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Linear strain rate in some arbitrary
direction x, 1s defined as the rate of
increase in length per unit length in
that direction. Linear strain rate would
be negative 1f the line segment length
were to decrease. Here we follow the
increase 1n length of line segment

PQ into line segment P'Q’, which
yields a positive linear strain rate.
Velocity components and distances are
truncated to first-order since dx,,

and df are infinitesimally small.

Using the lengths marked in the figure, the linear strain rate in the x_-direction is

 d(P'Q —PQ
Eﬂ'ﬂ' - a PQ
Length of P'Q" in the x_-direction
r 8  Length of PQ in the x,-directi
f}uﬂ Length of PQ "':r e x-direction (4-22)
u, +—dx, | dt +dx, —u,dt — dx,, )
d 0x, ou,,
- dt dx, X,

———
Length of PQ in the x_-direction



Volumetric strain rate or bulk strain rate: The rate of increase of
volume of a fluid element per unit volume.

This kinematic property is defined as positive when the volume increases.

Another synonym of volumetric strain rate is also called rate of volumetric
dilatation, (the iris of your eye dilates (enlarges) when exposed to dim light).

The volumetric strain rate is the sum of the linear strain rates in three mutually
orthogonal directions.

Volumetric strain rate in Cartesian coordinates:

| DV 1dV du v ow
— =———=g, t &, te. = + +

V DtV dt WOTE 9 gy oz

The volumetric strain rate Is
zero in an incompressible flow.

Air parcel

Air being compressed by a piston in a
cylinder; the volume of a fluid element in
the cylinder decreases, corresponding to

a negative rate of volumetric dilatation.  Timet, Time 1,




Shear strain rate at a point: Half of the rate of decrease of the angle
between two initially perpendicular lines that intersect at the point.

Shear strain rate, initially perpendicular | d | (@ N a_:)

lines in the x- and y-directions: b = T 5 Kb TS 9y | ox

Shear strain rate in Cartesian coordinates:

| (Em N r’Mr) I (ﬂw N Em) | (fh‘.f N Em) 3
ey =2\ -t e ==\T-+ ey, ==\ -+
Yoo 2\ay  ax T 2 \ox 0z Y 2\az  ay

|
!
!
!
Strain rate tensor in Cartesian coordinates: |
|
au | fou ov\ 1 [ou ow |
— S\t =) Sl : |
dx 2\ay ax/ 2\dz ax Line b— |
Exx €xny Ex - - . . _ | \ :
' | fov du dv | [ov oW | Line a
ey =|ew &y & |=| ;2 t 2 . S\ oot o P& ——
' B . 2\ox ady dy 2\0dz oy |
Ex &5 £ !
' ' I
;

(rm n Efu) | (Em.' N r')f.«') ow
2\ Ay A7 2\ Jv A7 A7 v (44 = 773’{2 .
ox z/ LAy 0z 02 jab Fluid element

at time t
For a fluid element that translates

and deforms as sketched, the shear Lincb

strain rate at point P is defined as Pl o
half of the rate of decrease of the Line a U
angle between two initially Fluid element y

perpendicular lines (lines a and b). at time 1,



Figure shows a general (although
two-dimensional) situation in a
compressible fluid flow in which all
possible motions and deformations
are present simultaneously.

In particular, there is translation,
rotation, linear strain, and shear
strain.

Because of the compressible nature
of the fluid flow, there is also
volumetric strain (dilatation).

You should now have a better
appreciation of the inherent
complexity of fluid dynamics, and the
mathematical sophistication required
to fully describe fluid motion.

C D
A B

A fluid element illustrating
translation, rotation, linear
strain, shear strain, and
volumetric strain.
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EXAMPLE 4-6 Calculation of Kinematic Properties

in a Two-Dimensional Flow

Consider the steady, two-dimensional velocity field of Example 4-1:

V= (uv)=(05+08x)i + (15 — 08y)j (1)

where lengths are in units of m, time in s, and velocities in m/s. There is a
stagnation point at (—0.625, 1.875) as shown in Fig. 4-41. Streamlines of
the flow are also plotted in Fig. 4-41. Calculate the various kinematic proper-
ties, namely, the rate of translation, rate of rotation, linear strain rate, shear
strain rate, and volumetric strain rate. Verify that this flow is incompressible.

SOLUTION We are to calculate several kinematic properties of a given
velocity field and verify that the flow is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional, implying
no zcomponent of velocity and no variation of v or v with z

Analysis By Eq. 4-19, the rate of translation is simply the velocity vector
itself, given by Eq. 1. Thus,

Rate of translation: u = 0.5 + 0.8x v = 15— 0.8y w =10 (2)

The rate of rotation is found from Eq. 4-21. In this case, since w = 0
everywhere, and since neither u nor v vary with z, the only nonzero compo-
nent of rotation rate is in the zdirection. Thus,

L1 (ﬂu em)ﬂ
W = — —_— = — k =
2 \ox oy

In this case, we see that there is no net rotation of fluid particles as they
move about. (This is a significant piece of information, to be discussed in
more detail later in this chapter and also in Chap. 10.)

1 ~
Rate of rotation: B 0—-—0k=10 (3)
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FIGURE 4-41

Streamlines for the velocity field

of Example 4-6. The stagnation

point is indicated by the red circle

atx = —0.625 mandy = 1.875 m.
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Linear strain rates can be calculated in any arbitrary direction using
Eqg. 4-23. In the x-, -, and zdirections, the linear strain rates are
_du dv

£ —=08s! g =—= =08s1 g_

=10 (4)
T ax ¥ ay =

Thus, we predict that fluid particles stretch in the x-direction (positive linear
strain rate) and shrink in the y-direction (negative linear strain rate). This is
illustrated in Fig. 4-42, where we have marked an initially square parcel of
fluid centered at (0.25, 4.25). By integrating Eqgs. 2 with time, we calculate
the location of the four corners of the marked fluid after an elapsed time
of 1.5 s. Indeed this fluid parcel has stretiched in the x-direction and has
shrunk in the y-direction as predicted.

Shear strain rate is determined from Eq. 4-26. Because of the two-
dimensionality, nonzero shear strain rates can occur only in the xy-plane.
Using lines parallel to the x- and y-axes as our initially perpendicular lines,
we calculate g,

1 { du dv 1
g =—|—+—|=—=(0+0)=0 (5)
W 2(&}-‘ &x) 2( )

Thus, there is no shear strain in this flow, as also indicated by Fig. 4-42.

Although the sample fluid particle deforms, it remains rectangular; its initially

90° corner angles remain at 90° throughout the time period of the calculation.
Finally, the volumetric strain rate is calculated from Eq. 4-24:

1DV

= = —_ —1 =
v Dr En T 8y +8,=(08—-08 +0)s 0 (6)

Since the volumetric strain rate is zero everywhere, we can say definitively
that fluid particles are neither dilating (expanding) nor shrinking (compress-
ing) in volume. Thus, we verify that this flow is indeed incompressible. In
Fig. 4-42, the area of the shaded fluid particle (and thus its volume since
it is a 2-D flow) remains constant as it moves and deforms in the flow field.

ERIII VAN W N
AN
Eil N
\Qsh._:
I FIGURE 442

Deformation of an initially square
parcel of marked fluid subjected to
the velocity field of Example 4-6 for
a time period of 1.5 s. The stagnation
point is indicated by the red circle at
x=—0625mandy = 1.875m, and
several streamlines are plotted.
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4-5 m VORTICITY AND ROTATIONALITY

Another kinematic property of great importance to the analysis of fluid flows is
the vorticity vector, defined mathematically as the curl of the velocity vector

- _:|

Vorticity vector: { = VX V = curl(V)
2
. S =S 4
Rate of rotation vector: w =7 VXV= > curl(V) = 5
Vorticity is equal to twice the
angular velocity of a fluid particle S
5 5 o ¢
C=AXB
J' “*
=— The direction
—~ of a vector
\\ cross product -~ _
is determined The vorticity vector is equal to
B by the right- twice the angular velocity vector

hand rule. of a rotating fluid particle. 30



If the vorticity at a point in a flow field is nonzero, the
fluid particle that happens to occupy that point in
space is rotating; the flow in that region is called
rotational.

Likewise, if the vorticity in a region of the flow is zero
(or negligibly small), fluid particles there are not
rotating; the flow in that region is called irrotational.

Physically, fluid particles in a rotational region of flow
rotate end over end as they move along in the flow.

Fluid particles not rotating

Velocity profile

The difference between
rotational and irrotational
flow: fluid elements in a
rotational region of the
flow rotate, but those in
an irrotational region of
the flow do not.

[rrotational outer flow region

Rotational boundary

(7

layer region

___.._/@'%___._@___*. _____

N
Fluid particles rotating ol



Vorticity vector in Cartesian coordinates:

— dw  dv\- du  dw\-= dv  du\=
(=m0 )t t — |k
v 0z a7z  dx dx  dy

Iwo-dimensional flow in Cartesian coordinates:

— v du\~
o (o)
ox  dy

e e

S ——— >~

v -

-
X

For a two-dimensional flow in the xy-plane, the vorticity vector always
points in the z- or z-direction. In this illustration, the flag-shaped fluid
particle rotates in the counterclockwise direction as it moves in the xy-
plane; its vorticity points in the positive z-direction as shown.
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_
m EXAMPLE 4-7 Vorticity Contours in a Two-Dimensional Flow

_

m Consider the CFD calculation of two-dimensional free-stream flow impinging

m on a block of rectangular cross section, as shown in Figs. 4-33 and 4-34.
Plot vorticity contours and discuss.

SOLUTION We are to calculate the vorticity field for a given velocity field
produced by CFD and then generate a contour plot of vorticity.

Analysis Since the flow is two-dimensional, the only nonzero component of
vorticity is in the zdirection, normal to the page in Figs. 4-33 and 4-34.
A contour plot of the zcomponent of vorticity for this flow field is shown in
Fig. 4-47. The blue region near the upper-left corner of the block indicates
large negative values of vorticity, implying clockwise rotation of fluid particles
in that region. This is due to the large velocity gradients encountered in this
portion of the flow field; the boundary layer separates off the wall at the corner

of the body and forms a thin shear layer across which the velocity changes
rapidly. The concentration of vorticity in the shear layer diminishes as vortic-
ity diffuses downstream. The small red region near the top right corner of the
block represents a region of positive vorticity (counterclockwise rotation)—a
secondary flow pattern caused by the flow separation.

Discussion We expect the magnitude of vorticity to be highest in regions
where spatial derivatives of velocity are high (see Eq. 4-30). Close exami-
nation reveals that the blue region in Fig. 4-4/ does indeed correspond to
large velocity gradients in Fig. 4-33. Keep in mind that the vorticity field of
Fig. 4-47 is time-averaged. The instantaneous flow field is in reality turbu-
lent and unsteady, and vortices are shed from the bluff body.

Symmetry plane

FIGURE 447

Contour plot of the vorticity field {.
due to flow impinging on a block,

as produced by CFD calculations;

only the upper half 1s shown due to
symmetry. Blue regions represent
large negative vorticity, and red
regions represent large positive vorticity.
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EXAMPLE 4-8 Determination of Rotationality
in a Two-Dimensional Flow

Consider the following steady, incompressible, two-dimensional velocity field:
V=v)=x7+ 2y —1DJj (1)

Is this flow rotational or irrotational? Sketch some streamlines in the first
quadrant and discuss.

SOLUTION We are to determine whether a flow with a given velocity field
is rotational or irrotational, and we are to draw some streamlines in the first
quadrant.

Analysis Since the flow is two-dimensional, Eq. 4-31 is applicable. Thus,

e = (a—” - "L”)E = (—2y — O)k = —2yk 2)
ox dy ’

Since the vorticity i1s nonzero, this flow is rotational. In Fig. 4-48 we plot
several streamlines of the flow in the first quadrant; we see that fluid moves
downward and to the right. The translation and deformation of a fluid parcel
is also shown: at At = 0, the fluid parcel is square, at At = 0.25 s, it has
moved and deformed, and at At = 0.50 s, the parcel has moved farther and
is further deformed. In particular, the right-most portion of the fluid parcel
moves faster to the right and faster downward compared to the left-most por-
tion, stretching the parcel in the x-direction and squashing it in the vertical
direction. It is clear that there is also a net clockwise rotation of the fluid
parcel, which agrees with the result of Eq. 2.

Discussion From Eq. 4-29, individual fluid particles rotate at an angular
velocity equal to @ = —yf, half of the vorticity vector. Since @ is not con-
stant, this flow is not solid-body rotation. Rather, @ is a linear function of y.
Further analysis reveals that this flow field is incompressible; the area (and
volume) of the shaded regions representing the fluid parcel in Fig. 4-48
remains constant at all three instants in time.
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Determination of Rotationality in a Two-Dimensional Flow

steady, incompressible, two-

dimensional velocity field:

-2

—

d
!

-

V=(urv)= X% + (—2xy — l);

Vorticity:
v ou

T\ [ = (&r - &)E = (—2y — O)k = —2yk

Deformation of an initially
square fluid parcel subjected
to the velocity field of Example
4-8 for a time period of 0.25 s
and 0.50 s. Several
streamlines are also plotted Iin
the first quadrant. It is clear

that this flow Is rotational. %P



Vorticity vector in cylindrical coordinates:

— | du.  duy\- du, du\_ 1 alriy)  du,\=
f: = —— — — {.rr_ —|— - — {J” —|— — — = e.
) rootl oz az  odr r\ ar ott )~

Iwo-dimensional flow in cyvlindrical coordinates:
_';3 ]. a(erI) aHr —*
=—\—Z———7Jk
r\ or at)

For a two-dimensional flow in the

ré-plane, the vorticity vector

always points in the z (or z)

direction. In this illustration, the

flag-shaped fluid particle rotates
x inthe clockwise direction as it
moves in the ru-plane; its vorticity
points in the z-direction as
shown.
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Comparison of Two Circular Flows

Flow A—solid-body rotation:

Flow B—line vortex:

Flow A—solid-body rotation:

Flow B—line vortex:

i, =0 and Uy = wr
u, =0 and Uy = K
P
1 { dwr? - -
= —( (wr) _ D)k = 2k
r\.or
1/d —
- —(@ - ﬂ)k =0
r\ ar
Flow B g |

Streamlines and
velocity profiles for
(a) flow A, solid-body
rotation and (b) flow
B, a line vortex. Flow
A is rotational, but
flow B is irrotational
everywhere except at
the origin.

_kK
.
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A simple analogy can be made
between flow A and a merry-
go-round or roundabout, and
flow B and a Ferris wheel.

As children revolve around a
roundabout, they also rotate at
the same angular velocity as
that of the ride itself. This is
analogous to a rotational flow.

In contrast, children on a
Ferris wheel always remain
oriented in an upright position
as they trace out their circular
path. This is analogous to an
irrotational flow.

A simple analogy: (a) rotational circular
#s flow is analogous to a roundabout, while
1 (b) irrotational circular flow is analogous

. 58
to a Ferris wheel.



Streamlines

FIGURE 4-52

Streamlines in the rf-plane for the
case of a line sink.

EXAMPLE 4-9 Determination of Rotationality of a Line Sink

A simple two-dimensional velocity field called a line sink is often used to
simulate fluid being sucked into a line along the z-axis. Suppose the volume
flow rate per unit length along the zaxis, V/L, is known, where V is a nega-
tive quantity. In two dimensions in the r-plane,

o Vo1
Line sink: u, =

ey and u, =0 (1)

Draw several streamlines of the flow and calculate the vorticity. Is this flow
rotational or irrotational?

SOLUTION Streamlines of the given flow field are to be sketched and the
rotationality of the flow is to be determined.
Analysis Since there is only radial flow and no tangential flow, we know

immediately that all streamlines must be rays into the origin. Several stream-
lines are sketched in Fig. 4-52. The vorticity is calculated from Eq. 4-33:

[ = (&(mﬁ} _ 2 )4—1(13— ’ ( v 1))k 0 (2)
r\. ar afl “r r 90 \2mwL r

Since the vorticity vector is everywhere zero, this flow field is irrotational.
Discussion Many practical flow fields involving suction, such as flow into

inlets and hoods, can be approximated quite accurately by assuming irrota-
tional flow (Heinsohn and Cimbala, 2003).
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4—-6 m THE REYNOLDS TRANSPORT THEOREM

Two methods of analyzing the spraying of
deodorant from a spray can:

(a) We follow the fluid as it moves and
deforms. This is the system approach—no
mass crosses the boundary, and the total
mass of the system remains fixed.

(b) We consider a fixed interior volume of the
can. This is the control volume approach—
mass crosses the boundary.

-
- N\
o~
-
o~

Sprayed mass \

-
- -

r—— System
Reyn!
Deod?

(@)

The relationship
between the time rates
of change of an
extensive property for a
system and for a control
volume is expressed by
the Reynolds transport
theorem (RTT).

The Reynolds transport theorem
(RTT) provides a link between
the system approach and the
control volume approach.

r 4

Control
volume




Control volume at time ¢ + Ar
(CV remains fixed in time)

System (material volume)
and control volume at time ¢

(shaded region)

System at time t + At
(hatched region)

gl o
L AN

(

Inflow during At

Outflow during At

Attime t: Sys =CV
Attime 1 + A Sys=CV =1+11

dB.ys  dBey
dr  dt

o S][] —|— JE'jlqlul

The time rate of change of the
property B of the system is equal to
the time rate of change of B of the
control volume plus the net flux of B
out of the control volume by mass
crossing the control surface.

This equation applies at any instant
in time, where it is assumed that
the system and the control volume
occupy the same space at that
particular instant in time.

A moving system (hatched region) and
a fixed control volume (shaded region)
in a diverging portion of a flow field at
times t and t+At. The upper and lower
bounds are streamlines of the flow.
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Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b = B/m represent the comresponding intensive property. Not-
ing that extensive properties are additive, the extensive property B of the
systern at times f and ¢ + Ar is expressed as

B, = Bev, (the system and CV concide at time 1)
Bs}'s.t+.‘l‘n.|' = Boy ivar — Brisa T By g
Subtracting the first equation from the second one and dividing by Ar gives

B-a}'s-.r+.'l'|.r - Bs}a: BE‘\-’J+.'!|.|' - Be:v,r BI.:+.".'|.|' " BI'LHar

Ar Ar Ar At

Taking the limit as At — 0, and using the definition of derivative, we get
[’.!IB,_;:{._{L G'IBC".-'

ar ” -8B, +B,, (4-38)
or
dB, iR
¥s v
dt = At — byp VA, + byp,VaA,
since
By evar =0y iar =0\ Vi pin =0 VI AT A,
By var = bamiy a0 = DapaVp ppar = Bap Vo AT A,
and
: . By isa byp, Vi At Ay
.= =1 = |i —_— V.
By, =B, .'E]—]:ll] Af L,Llﬂ'ln Af by Vi Ay
. . B EL_\- .i'*'_-v ﬁTA
Bl:uut = B]I = lim Lord = lim # = EI:FJE‘FEAE

Ar—0 At Ar—0 Ar
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Mass Mass
entering \’ \\ leaving
\
| Control volume ]
f"’“ﬂ ’
r \
n= " v
outward T~ oo _
normal 1 -
n
_}
il
Malss
leaving

pbV -1 dA

Bm:t_ B Bm: J
Cs

The integral of bpV - 7 dA over the

control surface gives the net amount
of the property B flowing out of the
control volume (into the control

volume if it is negative) per unit time.

B{:V = ﬂh {'f 1!.-"II
v

Py i
dA
Y dA 6
Outtlow: Inflow: 1}
6 < 90° 8 = 090°

V.=Vl n'lcos 6 = V cos

If # < 90°, then cos # > 0 (outflow).
If 8 > 90°, then cos # < 0 (inflow).
If & = 90°, then cos # =0 (no flow).

Outflow and inflow of mass across the
differential area of a control surface.

RTT, fixed CV:
dB 8VS d

bV - 7i dA
dt dt Jow pov R

I|r:u"} d\V +
‘Cs
Alternate RTT, fixed CV:
dBgy,
dt

d i -
—(pbydV + | pbV-ndA
“CV ot “CS 63




. . — — —
Relative velocity: V.=V — Vg

RTT, nonfixed CV Bye _d |
, nonfixe : P i
cv
ﬂrBE-‘l.’.‘:
RTT, steady flow: ﬁ* =
{ L

Relative velocity crossing a control
surface is found by vector addition of
the absolute velocity of the fluid and
the negative of the local velocity of
the control surface.

pb dV + J pbV, - 7 dA

J f:f)‘:’r - 7 dA

Reynolds transport
theorem applied to a
control volume moving
at constant velocity.

Absolute reference frame:

Control volume

Relative reference frame:

Control volume




J pbV, - i dA = by, J pV, 1 dA = bym,
A A

'{‘FBH}’H d : :
= — pb dV + 2 m, by, — E m, b,
dt dr ., out in -
for each outlat for each inlat

Approximate RTT for well-defined inlets and outlets:

My == Pavg ur =P angr_. avg A

dB... -
d;}” = % phdV + ) poebaveVraA = 2 PavelaveVrave A
Jow out . in :
for each outlet for each inlet
CV o siusermmsn - An example control volume in which
/~ @ 7 there is one well-defined inlet (1) and
e : =g two well-defined outlets (2 and 3). In
®: ®:§ ;uch cases, the control surface .|ntegral
: : | in the RTT can be more conveniently
T\ ' 3. written in terms of the average values of

. _duaa i fluid properties crossing each inlet
and outlet. 65



Alternate Derivation of the Reynolds Transport Theorem

One-dimensional Leibniz theorem:

d (=" s e db . da
— Gix,fydx = | —dx +—0G(b,t) —— Gla, 1)
dr | _ . Jooot dt dt

A more elegant mathematical derivation of

the Reynolds transport theorem is possible

through use of the Leibniz theorem

The Leibniz theorem takes into account
the change of limits a(t) and b(t) with LG, D)
respect to time, as well as the unsteady
changes of integrand G(x, t) with time.

The one-dimensional Leibniz
theorem is required when
calculating the time derivative of
an integral (with respect to x) for
which the limits of the integral

L = alt)

are functions of time. a(t) b(t)

=¥



EXAMPLE 4-10 One-Dimensional Leibniz Integration

Reduce the following expression as far as possible:

d x=Ct
F(f) = — e~ dx (1)
() fff L=u f

SOLUTION F(? is to be evaluated from the given expression.

Analysis We could try integrating first and then differentiating, but since
Eqg. 1 is of the form of Eq. 4-49, we use the one-dimensional Leibniz theo-
rem. Here, G(x, ) = e * (G is not a function of time in this simple exam-
ple). The limits of integration are a(f) = O and b(t) = Ct. Thus,

F(t) = bEa’ +ﬁG(b 1) — d—G 1) F(t) = Ce ¢" (2)
(1) = | ar X d ~—v—} QL (a, —> ) =
0 C e 0

Discussion You are welcome to try to obtain the same solution without using
the Leibniz theorem.
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[n three dimensions, the Leibniz theorem for a volume integral is

Three-dimensional Leibniz theorem:

-
< Gix,v.o.hyd =
dt . '

WA

aG
—dV +

-

<V dt “Ar)

—

GV, - i dA (4-50)

where V(1) is a moving and/or ﬂcl’nrming volume (a function of time). A(f)
is its surface (boundary), and V, is the absolute velocity of this (moving)
surface (Fig. 4-62). Equation 4-50 is valid for any volume, moving and/or
deforming arbitrarily in space and time. For consistency with the previous
analyses, we set integrand G to pb for application to fluid flow,

Three-dimensional Leibniz theorem applied to fluid flow:

%J pb dV = J rimb)du+ pbV, - i dA (4-51)
Vit Vin - Alr)

It we apply the Leibniz theorem to the special case of a material volume (a

system of fixed identity moving with the fluid flow), then V, = V every-

where on the material surface since it moves with the fluid. Here V is the

local fluid velocity, and Eq. 4-51 becomes
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Three-dimensional Leibniz theorem:

i
dr |,

(1)

0G R
G(x.y.z.r)dV:J' —a’V+J' GV, -ndA

Vi) ! A(l)

Three-dimensional Leibniz theorem applied to fluid flow:

dt

d d =
—J pde=J —(pb)dV+J pbV, - 1 dA
Vit Vit ot Alr)

J Gx,v,z. ) dV
W)

The three-dimensional Leibniz
theorem is required when calculating
the time derivative of a volume
integral for which the volume itself
moves and/or deforms with time. It
turns out that the three-dimensional
form of the Leibniz theorem can be
used in an alternative derivation of
the Reynolds transport theorem.




ii’B.‘i'&'S
General RT1, nonfixed CV- h" =
.

The material volume (system)
and control volume occupy the
same space at time t (the blue

shaded area), but move and
deform differently. At a later time
they are not coincident.

d

bV - TidA
ol P

(pb) dV +

“CV “C5

System (material volume)
and control volume at time ¢

System at time 1 + Ar

Control volume at time t + At



u
m EXAMPLE 4-11 Reynolds Transport Theorem

u in Terms of Relative Velocity
m

W Beginning with the Leibniz theorem and the general Reynolds transport theo-
rem for an arbitrarily moving and deforming control volume, Eq. 4-53, prove

that Eq. 4-44 is valid.

SOLUTION Equation 4-44 is to be proven.

Analysis The general three-dimensional version of the Leibniz theorem,
Eq. 4-50, applies to any volume. We choose to apply it to the control vol-
ume of interest, which can be moving and/or deforming differently than the

material volume (Fig. 4-63). Setting G to pb, Eq. 4-50 becomes
g

dt

pbdV = L 9 (obydV + | pbVus-ii dA
v Jov ot S

JC JC

We solve Eq. 4-53 for the control volume integral,

dB,,

k) . L
cvar(pb)du dt

o

pbV-ii dA
JC8

Substituting Eq. 2 into Eq. 1, we get

d [ dB_ . L

Eecv pbdV = dr- = Ls pbV-n dA + Jo. pbVig-n dA
Combining the last two terms and rearranging,

dB.. 4 [ “ R,
ube @ ) pbdV + Lpb(v — Veg)-nt dA
But recall that the relative velocity is defined by Eq. 4-43. Thus,
. : 4By, 4| B

RTT in terms of relative velocity: T dr Jos pb d\/ + Jee pb V.- dA

(1)

(2)

(3)

(4)

(5)

J



Relationship between Material Derivative and RTT

Lagrangian
description

System
analysis

Eulerian
description

RTT

Control
volume
analysis

The Reynolds transport theorem for finite

volumes (integral analysis) is analogous to the

material derivative for infinitesimal volumes
(differential analysis). In both cases, we
transform from a Lagrangian or system
viewpoint to an Eulerian or control volume

viewpoint.

While the Reynolds transport
theorem deals with finite-size
control volumes and the
material derivative deals with
infinitesimal fluid particles, the
same fundamental physical
interpretation applies to both.

Just as the material derivative
can be applied to any fluid
property, scalar or vector, the
Reynolds transport theorem
can be applied to any scalar or
vector property as well.
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Summary

Lagrangian and Eulerian Descriptions
v" Acceleration Field
v' Material Derivative

Flow Patterns and Flow Visualization
v Streamlines and Streamtubes, Pathlines,
v' Streaklines, Timelines
v Refractive Flow Visualization Techniques
v Surface Flow Visualization Techniques
Plots of Fluid Flow Data
v Vector Plots, Contour Plots
Other Kinematic Descriptions
v" Types of Motion or Deformation of Fluid Elements
Vorticity and Rotationality
v' Comparison of Two Circular Flows
The Reynolds Transport Theorem
v’ Alternate Derivation of the Reynolds Transport Theorem
v Relationship between Material Derivative and RTT
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