The Least Cost Method is another method used to obtain the initial feasible solution for the transportation problem. Here, the allocation begins with the cell which has the minimum cost. The lower cost cells are chosen over the higher-cost cell with the objective to have the least cost of transportation.

	Warehouse P	Warehouse Q	Warehouse R	Warehouse S	Source
Plant A	5	1	3	3	34
Plant B	3	3	5	4	15
Plant C	6	4	4	3	12
Plant D	4	1	4	2	19
Demand	21	25	17	17	

Step-1: Check given problem is balanced transportation problem or un balanced transportation problem.
For balanced transportation problem, sum of demand should equal to sum of supply
For given problem,
Total Demand $=21+25+17+17=80$
Total Supply $=34+15+12+19=80$
So balanced transportation problem.

Cost Matrix

5	1	3	3
3	3	5	4
6	4	4	3
4	1	4	2

Find the least cost in cost matrix .
$C(1,2)=1$
C $(4,2)=1$
Select any cell out of $\mathrm{C}(1,2)$ or $\mathrm{C}(4,2)$
I have selected $\mathrm{C}(\mathbf{1 , 2})$.

Demand of ware house $\mathbf{Q}=\mathbf{2 5}$
Supply of plant $A=34$
So allocate 25 unit to $C(1,2)$

	Warehouse \mathbf{P}	Warehouse \mathbf{Q}	Warehouse \mathbf{R}	Warehouse S	Source
Plant A	5	$1_{(25)}$	3	3	$34(9)$
Plant B	3	3	5	4	15
Plant C	6	4	4	3	12
Plant D	4	1	4	2	19
Demand	21	$25(0)$	17	17	

Next least cost matrix C (4, 4) =2
Demand of ware house $S=17$

$$
\text { Supply of plant } D=19
$$

Allocate 17 unit to $C(4,4)$

	Warehouse \mathbf{P}	Warehouse \mathbf{Q}	Warehouse \mathbf{R}	Warehouse S	Source
Plant A	5	$\mathbf{1}_{(25)}$	$3_{(9)}$	3	$34(9)(0)$
Plant B	3	3	5	4	15
Plant C	6	4	4	3	12
Plant D	4	1	4	$2(17)$	$19(2)$
Demand	21	$25(0)$	$17(8)$	$17(0)$	

Next least cost matrix C (1,3) and C(2,1)
Select any one of them. I have selected $C(1,3)$
Demand of warehouse $\mathrm{R}=17$
Remaining Supply of plant $A=9$
So allocate 9 unit to cell $C(1,3)$

	Warehouse \mathbf{P}	Warehouse \mathbf{Q}	Warehouse \mathbf{R}	Warehouse S	Source
Plant A	5	$\mathbf{1}_{(25)}$	$\mathbf{3}_{(9)}$	3	$34(9)(0)$
Plant B	$3_{(15)}$	3	5	4	$15(0)$
Plant C	6	4	4	3	12
Plant D	4	1	4	$2(17)$	$19(2)$
Demand	21	$25(0)$	$17(8)$	$17(0)$	

Next least cost cell is $C(2,1)=3$
Demand of ware house $\mathbf{P}=21$
Supply of plant $B=15$
Allocate $C(2,1)=15$

	Warehouse P	Warehouse \mathbf{Q}	Warehouse \mathbf{R}	Warehouse S	Source
Plant A	5	$\mathbf{1}_{(25)}$	$\mathbf{3}_{(9)}$	3	$34(9)(0)$
Plant B	$\mathbf{3}_{(15)}$	3	5	4	$15(0)$
Plant C	$6_{(4)}$	4	$4(8)$	3	$12(4)(0)$
Plant D	$4_{(2)}$	1	4	$2(17)$	$19(2)(0)$
Demand	$21(6)(4)(0)$	$25(0)$	$17(8)(0)$	$17(0)$	

$$
\begin{aligned}
\text { Cost } & =1 \times 25+3 \times 9+3 \times 15+6 \times 4+4 \times 8+4 \times 2+2 \times 17 \\
& =195
\end{aligned}
$$

