
MQTT 

MQTT stands for Message Queuing Telemetry Transport. MQTT is a machine to 

machine internet of things connectivity protocol. It is an extremely lightweight and 

publish-subscribe messaging transport protocol. This protocol is useful for the 

connection with the remote location where the bandwidth is a premium. These 

characteristics make it useful in various situations, including constant environment 

such as for communication machine to machine and internet of things contexts. It is a 

publish and subscribe system where we can publish and receive the messages as a 

client. It makes it easy for communication between multiple devices. It is a simple 

messaging protocol designed for the constrained devices and with low bandwidth, so 

it's a perfect solution for the internet of things applications. 

Characteristics of MQTT 

The MQTT has some unique features which are hardly found in other protocols. Some 

of the features of an MQTT are given below: 

o It is a machine to machine protocol, i.e., it provides communication between 

the devices. 

o It is designed as a simple and lightweight messaging protocol that uses a 

publish/subscribe system to exchange the information between the client and 

the server. 

o It does not require that both the client and the server establish a connection at 

the same time. 

o It provides faster data transmission, like how WhatsApp/messenger provides a 

faster delivery. It's a real-time messaging protocol. 

o It allows the clients to subscribe to the narrow selection of topics so that they 

can receive the information they are looking for. 

History of MQTT 



 

The MQTT was developed by Dr. Andy Stanford-Clark, IBM, and Arlen Nipper. The 

previous versions of protocol 3.1 and 3.1.1 were made available under MQTT ORG. In 

2014, the MQTT was officially published by OASIS. The OASIS becomes a new home 

for the development of the MQTT. Then, the OASIS started the further development 

of the MQTT. Version 3.1.1 is backward comfortable with a 3.1 and brought only minor 

changes such as changes to the connect message and clarification of the 3.1 version. 

The recent version of MQTT is 5.0, which is a successor of the 3.1.1 version. Version 5.0 

is not backward, comfortable like version 3.1.1. According to the specifications, version 

5.0 has a significant number of features that make the code in place. 

The major functional objectives in version 5.0 are: 

o Enhancement in the scalability and the large-scale system in order to set up 

with the thousands or the millions of devices. 

o Improvement in the error reporting 

MQTT Architecture 

To understand the MQTT architecture, we first look at the components of the 

MQTT. 

o Message 

o Client 

o Server or Broker 

o TOPIC 

Message 

https://www.javatpoint.com/ibm-full-form


The message is the data that is carried out by the protocol across the network for the 

application. When the message is transmitted over the network, then the message 

contains the following parameters: 

1. Payload data 

2. Quality of Service (QoS) 

3. Collection of Properties 

4. Topic Name 

Client 

In MQTT, the subscriber and publisher are the two roles of a client. The clients 

subscribe to the topics to publish and receive messages. In simple words, we can say 

that if any program or device uses an MQTT, then that device is referred to as a client. 

A device is a client if it opens the network connection to the server, publishes messages 

that other clients want to see, subscribes to the messages that it is interested in 

receiving, unsubscribes to the messages that it is not interested in receiving, and closes 

the network connection to the server. 

In MQTT, the client performs two operations: 

In MQTT, the client performs two operations: 

Publish: When the client sends the data to the server, then we call this operation as a 

publish. 

Subscribe: When the client receives the data from the server, then we call this 

operation a subscription. 

Server 

The device or a program that allows the client to publish the messages and subscribe 

to the messages. A server accepts the network connection from the client, accepts the 

messages from the client, processes the subscribe and unsubscribe requests, forwards 

the application messages to the client, and closes the network connection from the 

client. 

TOPIC 



 

The label provided to the message is checked against the subscription known by the 

server is known as TOPIC. 

Architecture of MQTT 

 

Now we will look at the architecture of MQTT. To understand it more clearly, we will 

look at the example. Suppose a device has a temperature sensor and wants to send 

the rating to the server or the broker. If the phone or desktop application wishes to 

receive this temperature value on the other side, then there will be two things that 

happened. The publisher first defines the topic; for example, the temperature then 

publishes the message, i.e., the temperature's value. After publishing the message, the 

phone or the desktop application on the other side will subscribe to the topic, i.e., 

temperature and then receive the published message, i.e., the value of the 

temperature. The server or the broker's role is to deliver the published message to the 

phone or the desktop application. 

MQTT Message Format 



 

The MQTT uses the command and the command acknowledgment format, which 

means that each command has an associated acknowledgment. As shown in the above 

figure that the connect command has connect acknowledgment, subscribe command 

has subscribe acknowledgment, and publish command has publish acknowledgment. 

This mechanism is similar to the handshaking mechanism as in TCP protocol. 

Now we will look at the packet structure or message format of the MQTT. 

 

The MQTT message format consists of 2 bytes fixed header, which is present in all the 

MQTT packets. The second field is a variable header, which is not always present. The 

third field is a payload, which is also not always present. The payload field basically 

contains the data which is being sent. We might think that the payload is a compulsory 

field, but it does not happen. Some commands do not use the payload field, for 

example, disconnect message. 

Fixed Header 

Let's observe the format of the fixed header. 



 

As we can observe in the above format that the fixed header contains two bytes. The 

first byte contains the following fields: 

o MQTT Control Packet Type: It occupies 4 bits, i.e., 7 to 4-bit positions. This 4-

bit is an assigned value, and each bit represents the MQTT control packet type. 

o Flag specific to each MQTT packet type: The remaining 4-bits represent flag 

specific to each MQTT packet type. 

The byte 2 contains the remaining length, which is a variable-length byte integer. It 

represents the number of bytes remaining in a current control packet, including data 

in the variable header and payload. Therefore, we can say that the remaining length is 

equal to the sum of the data in the variable header and the payload. 

MQTT Control Packet Types 



 

The above table shows the control packet types with 4-bit value and direction flow. As 

we can observe that every command is followed by acknowledgment like CONNECT 

has CONNACK, PUBLISH has PUBACK, PUBREC, PUBREL, and PUBCOMP, SUBSCRIBE 

has SUBACK, UNSUBSCRIBE has UNSUBACK. 

 


	Characteristics of MQTT
	History of MQTT
	MQTT Architecture
	Message
	Architecture of MQTT
	MQTT Message Format
	Fixed Header

