Muscle Structure and Function

Lecture: Day 2

Ashish Kumar Katiyar, Ph.D.

Gross Anatomy of Muscle

- 1 muscle = 1 organ
- Each muscle served by a nerve, artery, & vein (1 or more)
- Rich <u>blood supply</u> need energy & O₂ to survive
- <u>Connective tissue sheaths</u>: wraps each cell and reinforce whole muscle
- <u>Attachment</u>
 - (1) directly to bone
 - (2) by tendons or aponeuroses to bone, cartilage, or other muscles

Organization of Skeletal Muscle

<u>Muscle</u>

- Muscle cells + blood vessels + nerve fibers
- Covered by epimysium (connective tissue)

Fascicle

- Bundle of muscle cells
- Surrounded by **perimysium**

<u>Muscle fiber (cell)</u>

• Surrounded by **endomysium**

<u>Myofibril</u>

Complex organelle

<u>Sarcomere</u>

Contractile unit

Structures of a skeletal muscle fiber

Muscle Fiber Arrangement

Copyright © 2003, Mosby, Inc. All Rights Reserved.

Sarcomere: The repeating patterns formed in muscle striations

Sarcomere

- Protein **myofilaments**:
 - Thick filaments = <u>myosin</u> protein
 - Thin filaments = <u>actin</u> protein

(d) Enlargement of one sarcomere (sectioned lengthwise). Notice the myosin heads on the thick filaments.

Thick Filaments

<u>Myosin head</u>: forms *cross bridges* with thin filaments
to contract muscle cell

Thin Filaments

- <u>Tropomyosin</u>: protein strand stabilizes actin
- <u>Troponin</u>: bound to actin and tropomyosin, affected by Ca²⁺

- <u>Sarcoplasmic Reticulum (SR</u>): specialized smooth ER, surrounds each myofibril
 - Stores and releases calcium
- <u>T Tubule</u>: part of sarcolemma, conducts nerve impulses to every sarcomere
 - Triggers release of calcium from SR

Copyright © 2010 Pearson Education, Inc.

Sliding Filament Model

- <u>During contractions</u>: thin filaments slide past thick ones so they overlap more
- Sarcomere shortens

Copyright © 2010 Pearson Education, Inc.

Neuromuscular Junction

- Connects the nervous system to the muscular system through synapses between nerve and muscle fibers
 - Directs action potentials = basically a small impulse that set off the chain of events that lead to muscle contractions
- Acetylcholine is the neurotransmitter that motor neurons use to control skeletal muscle contraction
 Synthesized in the cytoplasm of motor neuron

Sliding Filament theory- method by which muscles are though to contract

- Boat = Myosin (thick filament)
- **Oar** = Myosin side arm
- Water = Actin (thin filament)
- Life ring = Calcium

- **1**. ATP is bound to myosin side arm.
- 2. ATP splits into ADP + P (high energy)

Step 1: Action Potential

- 1. A nerve action potential releases *acetylcholine* into the synaptic cleft opening the Na+ channels.
- 2. Action potential spreads across sarcolemma releasing *Calcium* into sarcoplasma

Step 2 Myosin-actin binding

- 1. Calcium binds to troponin
- 2. A shape change in **troponin** moves **tropomyocin** out of the way of actin binding site
- 3. Actin and myosin bind using energy from cleaved ATP.

Step 3 Powerstroke

- 1. Side arm pivots so **myosin** and **actin** slide by each other shortening the sarcomere.
- 2. ADP and P released (low energy)

Step 4 ATP Binding Actinmyosin release

- **1.** A different ATP molecule binds to active site.
- 2. Actin released

Step 5 ATP cleavage

- 1. Return to high energy state
- 2. Cycle will repeat if Ca still available.

Think it over

•The boat (myosin) does not move far in one cycle, a muscle contraction requires many cycles

- If a muscle is contracted what happens if a new molecule of ATP is not available?
- Muscle stays contracted- cramps

•Why does rigor mortis occur? (Hint: What chemical is no longer available to the body?)

 ATP is not available to control calcium release so contractions are continuous 6-8 hours after death.

 Body relaxes 16-24 hours as enzymes break down contractile structures.

Sarcomere summary

Relaxed sarcomere

Contracted sarcomere

•<u>SF Animation 2</u> Focus Questions:

What chemical exposes the binding site for actin and myosin? • Calcium

What is the source of energy for a contraction?

•ATP

•ATP

What is the name of the step in which the actin filament is actively contracted?

Powerstroke

What chemical must be present in order for the actin and myosin filaments to separate?