EICOSANOIDS/Prostaglandins

Interest in eicosanoids first arose in the 1930s after reports that semen contained a lipid substance, apparently originating from the prostate gland, which contracted uterine smooth muscle. Later, the factor was named as prostaglandin, and it was not a single substance but a whole family of compounds generated by virtually all cells from 20-carbon unsaturated fatty acid precursors

BIOSYNTHESIS: Prostaglandins and thromboxanes are synthesized from arachidonic acid (obtained from membrane phospholipids due to the action of phospholipase A2 ; rate limiting enzyme) with the help of enzyme cyclooxygenase (COX)

PROSTANOID RECEPTORS There are five main classes of prostanoid receptor, all of which are G protein– coupled receptors. They are termed **DP, FP, IP, EP and TP receptors**, respectively, depending on whether their ligands are PGD, PGF, PGI, PGE or TXA species. *Some have further subtypes*; for example, there are four EP receptors.

Receptor	Physiological ligands	Distribution	General physiological effect
IP	$PGI_2 \!\gg PGD_2$	Abundant in cardiovascular system, platelets, neurons and elsewhere	Generally inhibitory: e.g. smooth muscle relaxation, anti-inflammatory and anti- aggregatory effects
DP ₁	$PGD_2 \gg PGE_2$	Low abundance; vascular smooth muscle, platelets, CNS, airways, the eye	
EP ₂	$PGE_2 > PG F_{2\alpha}$	Widespread distribution	
EP ₄	$PGE_2 > PGF_{2\alpha}$	Widespread distribution	
TP	$TxA_2 = H_2 > D_2$	Abundant in cardiovascular system, platelets and immune cells. Two subtypes known with opposing actions	Generally excitatory: e.g. smooth muscle contraction pro-inflammatory and platelet aggregatory actions
FP	PGF _{2a} >PGD ₂	Very high expression in female reproductive organs	
EP ₁	$PGE_2 > PGF_{2\alpha}$	Myometrium, intestine and lung	
EP ₃	$PGE_2 > PGF_{2\alpha}$	Widespread distribution throughout body; many isoforms with different G protein coupling	Generally inhibitory: e.g. smooth muscle relaxation, anti-inflammatory and anti- aggregatory effects
DP ₂	$PGD_2 > PGF_{2\alpha}$	Different structure to other prostanoid receptors. Widely distributed especially in immune cells	

Major clinical uses of prostanoids:

• Gynaecological and obstetric:

 termination of pregnancy: gemeprost or misoprostol (a metabolically stable prostaglandin [PG]E analogue)

- induction of labour: dinoprostone or misoprostol
- postpartum haemorrhage: carboprost.
- Gastrointestinal:
- to prevent ulcers associated with non-steroidal anti-inflammatory drug use: misoprostol
- Cardiovascular:

 to maintain the patency of the ductus arteriosus until surgical correction of the defect in babies with certain congenital heart malformations: alprostadil (PGE1);

- to inhibit platelet aggregation (e.g. during haemodialysis): epoprostenol (PGI2), especially if heparin is contraindicated;

- primary pulmonary hypertension: epoprostenol
- Ophthalmic: open-angle glaucoma: latanoprost eye drops