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Objective of Regression analysis is to explain variability in dependent variable by means of 
one or more of independent or control variables. 

Applications 

There are four broad classes of applications of regression analysis. 

• Descriptive or explanatory: interest may be on describing “What factors influence vari- 
ability in dependent variable?” For example, factor contributing to higher sales among 
company’s sales force. 

Predictive, for example setting normal quota or baseline sales. We can also use estimated 
equation to determine “normal” and “abnormal” or outlier observations. 

• Comparing Alternative theoretical explanations, 

– Consumers use reference price in comparing alternatives, 

– Consumers use specific price points in comparing alternatives. 

• Decision purpose, 

– Estimating variable and fixed costs having calibrated cost function. 

– Estimating sales, revenues and profits having calibrated demand function. 

– Setting optimal values of marketing mix variables. 

– Using estimated equation for “What if” analysis. 

 
Data Requirement 

 

• Measurement on two or more variables one of which must be dependent. 

• Dependent variable must have interval or ratio scale measurement. 

• If independent variables are nominal scaled (e.g. brand choice), then appropriate caution 
must be maintained so that results from analysis can be interpreted. For example, it may 
be necessary to create variables that take values 0 and 1 or dummy variables. 

 
Steps in Regression Analysis 

 

1. Decide on purpose of model and appropriate dependent variable to meet that purpose. 

2. Decide on independent variables. 

Regression Analysis 

• 



[Type here]  

[Type here]  

 

3. Estimate parameters of regression equation. 

4. Interpret estimated parameters, goodness of fit and qualitative and quantitative assess- 
ment of parameters. 

5. Assess appropriateness of assumptions. 

6. If some assumptions are not satisfied, modify and revise estimated equation. 

7. Validate estimated regression equation. 
 

We will examine these steps with the assumption that purpose of model is already been decided 
and we need to perform remaining steps. 

Decision about Independent Variables 

Here are some suggestion for variable(s) to be included in regression analysis as independent 
variables. 

• Based on theory. 

– Economic, sales are a function of price, 

– Psychological, behavioral intention and attitude toward a product, 

– Biological, fertilizer usage, generally increase plant growth. 

• Prior research, 

– Replicate findings for earlier efforts. 

– Extend results for alternative product category. 

– Bring new insights to earlier efforts. 

• Educated “Guesses”, good idea or common sense. 

• Statistical approaches. 

– Stepwise Forward, add a variable that contributes most to explaining dependent 
variable, continue this, until either no variables are left to add or none of remaining 
variables contribute in explaining variation in dependent variable. 

– Stepwise Backward, add all variables to the model and remove one variable at a 
time, starting with one that explains least amount of variation in dependent variable. 

– All Subset, estimate all combinations containing two variables at a time, then three 
variables at a time etc. Then, choose a subset that has most stable set of independent 
variables. 
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• All variables contained in dataset. 

Estimating Parameters 

 
• Method of least squares, or 

• Method of maximum likelihood, or 

• Weighted least squares, or 

• Method of least absolute deviations. 

We will examine several alternative approaches to estimate parameters including situation 
where we have only two observations. 

A Simple Regression Model can be written as 
 

Value of Dependent variable = Constant + 

Slope × Value of Indep. variable + Error 

y = a + b × x + E 

• Constant (a), Slope (b) and Error (E) are unknown. 

• You observe N pair of values of dependent and independent variables. 

Regression analysis provides reasonable (statistically unbiased) values for slope(s) and 
intercept. 

An Illustrative Example - Two observations only. 
Suppose we have two observation (x1, y1) and (x2, y2) or (5,10) and (20,20). These observations 
graphically can be shown as follows. 
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The resulting equation would be y = 6.67 + .66 × x. 
Now, suppose we have two observation (x1, y1) and (x2, y2) or (5,20) and (20,10). These obser- 
vations graphically can be shown as follows. 
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Slope = y2−y1
 

x2−x1 

= 10−20 
20−5 

= −0.66 

Slope is negative because 
y2 < y1 

and x2 ≥ x1 

 
Intercept is y1 − b × x1 = 23.33 

 

The resulting equation would be y = 23.33 − .66 × x. 
Now suppose we observe five pairs of x and y observations as follows: (−2, 0), (−1, 0), (0, 1), (1, 1) 
and (2, 3). These are displayed below along with regression line which is shown in dashed for- 
mat. 
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As you can see from above examples, estimating parameters is nothing more than assigning 
appropriate values to parameters. Let us re-write our observations again, in somewhat different 
format and see another alternative approach to obtain parameter estimates. 

(x1 ,y1) 

(x2 ,y2 ) 

R2 = Explained variation 
Total variation 

y = 1 + 0.7 × x 

mean 
or  ȳ  

Total 
variation 

2 (y − ȳ) 

2 
Explained  variation  (ŷ − ȳ) 

 
2 

Unexplained  variation  (y − ŷ) 

 
0 −3 −2 −1 1 2    x 3 
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yi = 1 
1 
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Our regression equation can be written as 

xi = 0 

 1 

 

yi = a + b × xi + Ei i = 1, ··  · , 5. 

Suppose we added both sides (over all observations) of above equation, the we could write 
 

5 5 5 5 
Σ 

yi = 
Σ 

a + 
Σ 

bxi + 
Σ 

Ei. 

Further let us divide both sides by 5 or number of observations, we would get, 
Σ5 yi

 Σ5 a
 Σ5 bxi 

Σ5 Ei
 

5 5 5 5 

This is equal to 

ȳ = a + bx̄ + Ē. 

Let us assume that Ē is zero, which simply says that positive differences and negative differences 
cancel each other and on an average random noise is zero. Now subtract the average equation 
from our original equation. That is, 

yi − ȳ = b(xi − x̄) + Ei. 

Suppose  now  we  multiply  both  sides  by  (xi − x̄),  then  we  would  get  a  complicated  expression 
like 

(xi − x̄)(yi − ȳ) = b(xi − x̄)(xi − x̄) + Ei(xi − x̄). 

Let us now take average of both sides and divide by (5 1) or (N 1) where N is number of 
observations. This would lead to 

ΣN    (xi − x̄)(yi − ȳ) 
ΣN    (xi − x̄)(xi − x̄) 

ΣN     Ei(xi − x̄) 

N − 1 N − 1 N − 1 

We now have to make our second assumption which states that independent variable and error 

term  are  not  correlated.  That  is,  
ΣN     Ei(xi − x̄) = 0.  This  is  one  of  the  difficult  assumption 

to test but one that is required, to derive value of b. With this assumption, we are in position 
to write estimate  of b or b̂.  That is, 

ˆ 
ΣN 

(xi − x̄)(yi − ȳ) 
N 
i=1 (xi − x̄)(xi − x̄) 

 

2 

i=1 i=1 i=1 i=1 
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We  are  also  assuming  that  xi  − x̄  is  not  equal  to  zero.   That  is,  there  is  some  variation  in 
independent variable, one that is useful to explain variation in dependent variable. Once we 
know estimate of b, we can go back to ȳ = a + bx̄ and solve for a.  This we  will call as â and it 

can be obtained by â = ȳ     ̂bx̄.  Implicit in our effort to compute various averages, we assumed 
that each observation is equally weighted. This assumption is satisfied if error variability across 
observation is about the same.  That is, (yi      ŷi)2  is similar over  all the observations. 

Let  us  see  applicability  of  above  work  to  our  example.   First  note  that  ȳ  =  1  and  x̄  =  0. 
Then, yi − ȳ and xi − x̄ is 

 
 
 
 
 

 
This simplifies to 

0 − 1 
0 − 1 

yi − ȳ  = − 

1 − 1 
3 − 1 

 

xi − x̄ =  

−2 − 0  

−1 − 0  

1 − 0 
2 − 0 
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This would result in 

yi − ȳ =  

 

0   

xi − x̄ = 0 . 
 

 

2 

 
 
2 

 

  

(yi − ȳ)(xi − x̄)    = 

 
 

(xi − x̄)2 = 

0 
0 
4 

 
4 
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  1   

and 

 

This  would  mean  that  ̂b  =    7  and  â = 1. Note that our equation in this case would be 
yi = 1 + 0.7 xi. This is exactly same equation written on our graph as well. Note that we 
could also estimate proportion of variability explained by independent variable by computing 
R2 and set of other summary measures. 

 

Multiple independent variables 
Nothing much changes, if we had multiple variables. We, however, need to worry about joint 

variability of independent variables. Consider a situation with two independent variables(x1i 

1 

1  

0 

  

 

4 
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and x2i). That is, 
yi = a + b1 × x1i + b2 × x2i + Ei. 

Here our interest lies with finding best values of a, b1 and b2. To derive these, we could follow 
above steps. That is, first averaging of both sides, then subtracting the averages and finally 
multiplying  by  (x1i − x̄1)  and  (x2i − x̄2).  This  will  give  us  two  equations  with  two  unknowns. 
That is, 

(yi − ȳ) = b1(x1i − x̄1) + b2(x2i − x̄2) 

Multiply  first by (x1i − x̄1) and then by  (x2i − x̄2).  This will  result in, 

(yi − ȳ)(x1i − x̄1)    =    b1(x1i − x̄1)(x1i − x̄1) + b2(x2i − x̄2)(x1i − x̄1) 

(yi − ȳ)(x2i − x̄2)    =    b1(x1i − x̄1)(x2i − x̄2) + b2(x2i − x̄2)(x2i − x̄2) 

We would sum both sides of both equations and divide by N 1. Moreover for simplicity, we 
could make following substitutions. 

ΣN    (yi − ȳ)(x1i − x̄1) 
 

     i=1  N − 1 ΣN    (yi − ȳ)(x2i − x̄2) 
 

     i=1  N − 1 ΣN    (x1i − x̄1)(x2i − x̄2) 
 

2   1 1  2 

     i=1  

N − 1 ΣN    (x1i − x̄1)(x1i − x̄1) 
 

     i=1  N − 1 ΣN    (x2i − x̄2)(x2i − x̄2) 
 

     i=1 . 
N − 1 

These terms are called averages of sums of squared values of cross products (SSCP). These 
are very useful quantities in various multivariate analysis procedures. After substituting these 
terms, we may write our earlier equation as 

 

Syx1 = b̂1Sx1x1  + ̂b2Sx1x2 

Syx2 = b̂1Sx1x2  + ̂b2Sx2x2 

 

Suppose we assumed that Sx1x2 = 0, then we could at once write estimates for b1 and b2. That 
is, 

 

b̂1
 = 

Syx1 
S 

b̂2
 

x1x1 

= 
Syx2 
S 

x2x2 

Syx = 

Syx = 

Sx x  = Sx 
 
x = 

Sx 
 
x = 

Sx 
 
x = 

 

1 

2 

1  1 

2  2 
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If  Sx1x2    =/    0,  then  we  need  to  solve  these  two  equations  simultaneously  and  obtain  estimates. 
There is also a possibility that Sx1x2 = Sx1x1 which would also imply that Sx1x2 = Sx2x2 . This 
would result in collapse of two unknown to just one, that is, (b1 + b2). This condition is called 
perfect multicollinearity. Not that 

 

Syx1 = b̂1Sx1x1  + ̂b2Sx1x2 

Syx2 = b̂1Sx1x2   + ̂b2Sx2x2 , 

can be written in matrix form as follows: 

Syx1 

Syx2 

 

= 
Sx1x1 Sx1x2 

Sx1x2 Sx2x2 

b̂1 .
 

b2 
 

The solution to such matrix equations could be written as 

  
b̂1

 ! 

=

  
S

 
 
 

x1x1 

 

Sx1x2 

!−1    
S

 
yx1  

! 

. 

b̂2
 Sx1x2 Sx2x2 Syx2 

 

Let us summarize assumptions that were made up to this point. 
Assumptions of Regression Equation 

 

• On  an average  difference  between  the  observed  value  (yi)  and  the  predicted  value  (ŷi)  is 
zero. 

• On an average the estimated values of errors and values of independent variables are not 
related to each other. 

• The squared differences between the observed value and the predicted value are similar. 

• There is some variation in independent variable. If there are more than one variable in 
the equation, then two variables should not be perfectly correlated. 

 

We could also make following observations about slope and intercept. 
Intercept or Constant 

 

• Intercept is the point at which the regression intercepts y-axis. 

• Intercept provides a measure about the mean of dependent variable when slope(s) are 
zero. 

• If slope(s) are not zero then intercept is equal to the mean of dependent variable minus 
slope× mean of independent variable. 

  !   
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Slope 

• Change is dependent variable as we change independent variable. 

Zero slope means that independent variable does not have any influence on dependent 
variable. 

• For a linear model, slope is not equal to elasticity. That is because, elasticity is percent 
change in dependent variable, as a result one percent change in independent variable. 

 
Interpretation and Assessment 

In this step, I envision explaining obtained results and providing insights about set of vari- 
ables. This should be both from conceptual point of view as well as statistical perspective. Fur- 
thermore, statistical measures could either be qualitative1 such as r-square (R2) or quantitative 
measure like F-statistic. When computing R2, we do not make any additional assumptions. On 
the other hand, application of F-statistics we need additional assumptions. F-statistics is used 
to test whether set of regressors significantly explain variations in the dependent variable. To 
use F-statistic or t-statistic, we require two additional assumptions. First, which is our fourth 
assumption, require that error values be normally and identically distributed. Finally, we also 
need to decide on appropriate probability level to reject or accept our null hypothesis. I will 
usually follow prob. of 0.05 to reject null hypothesis. This in common language says that I will 
accept the null hypothesis 19 times out of 20 and reject it once out of 20. Here is a summary 
of steps that one could follow in testing hypothesis. 

1. Decide on null hypothesis. Most computer programs, unless we specify, test using the F-
statistic whether all regressor slopes are equal to zero. The t-statistic test whether a 
particular regressor is equal to zero. 

2. Decide on probability level at which to reject the null hypothesis. You may recall this as 
alpha (α) level associated with Type I error. Although the most scientific research tradi- 
tions use probability level of 0.05, you might be risk-taker and willing to use something 
else like 0.25. 

3. Compute test statistic2. 

1Consider a measure like R2. We know that it is bounded between zero and one. But actual magnitude 
that might be acceptable varies from applications to applications as well as quality of data. Hence indicators 
like R2, I consider them to be qualitative measures of goodness-of-fit. On the other hand, F-statistic require 
that we make assumptions about distribution of errors, probability level to reject or accept null hypothesis and 
specifies whether null or alternative hypothesis is true or false. Hence, indicators like F-statistic I will call them 
as quantitative measures. 

2The F-statistic is ratio of two mean squared errors, the average squared deviations explained to the average 
squared deviations not explained. Since we assume that errors are normally distributed, squared values of such 
errors are chi-squared (χ2) distributed. The F-statistic then is a ratio of two χ2 distributed variables. The t-
statistic is ratio of the estimated parameter value to the standard error of parameter estimate. 

• 
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4. Decide whether to reject or accept null hypothesis. At a particular probability level, if the 

tabled3 value is less than the computed statistic, then we should reject the null hypothesis 
and vice versa. There is an alternative for this step. Most computer programs, print 
statistic as well as probability of the computed statistic. In such a situation, if probability 
is less than or equal to 0.05, then we reject the null hypothesis. 

 

Following table summarizes above discussion about interpretation of parameters. 

Interpretational Measures 
 

Specific 
Aspect 

Descriptive Decision Oriented 

Goodness- 
of-fit 

R2  or  adjusted  R2,  indicates 
percent variation in dependent 
variable explained by a set of in- 
dependent variables. 

F-statistic, larger number means reject 
the null hypothesis that all parameters are 
zero 

Individual 
parame- 
ters 

Sign, Magnitude and elasticity t-statistic indicates whether specific pa- 
rameter is different from zero. In compar- 
ing, t-statistic for two parameters, a larger 
t-statistic indicates that the independent 
variable is more important than other. 

Let us apply all this to our small problem. First the SAS input. 

options nocenter nodate ps = 70 ls =80 nonumber formchar=|----|+| ------|; 
data toy; 
input y x; 
datalines; 

0 -2 
0 -1 
1 0 
1 1 
3 2 

;;;; 
proc  reg; model y = x; run; 

 
 
 
 
 
 
 
 
 

3I am here referring to table of t- or F-statistics. 



[Type here]  

[Type here]  

 
SAS output produced following: 

Dependent Variable: Y 

Analysis of Variance 

 

Source 
  

DF 
Sum of 

Squares 
Mean 

Square 
 

F Value 
 

Prob>F 

Model 
 

1 4.90000 4.90000 13.364 0.0354 
Error  3 1.10000 0.36667   

C Total  4 6.00000    

Root MSE 
 

0.60553 R-square 0.8167 
 

Dep Mean 1.00000 Adj R-sq 0.7556 
C.V. 60.55301   

 
Parameter Estimates 

 
Parameter Standard T for  H0: 

Variable DF Estimate Error Parameter=0 Prob >  |T| 

INTERCEP 1 1.000000 0.27080128 3.693 0.0345 
X 1 0.700000 0.19148542 3.656 0.0354 

Our null hypothesis for this example would state “variable x does not explain statistically 
significant variations in y”. Our computed F-statistic is 13.4 with prob. of 0.035 which suggest 
that we should reject the null hypothesis. Moreover, R2 is 0.817 which indicates that substantial 
proportion of variation in y is accounted by variable x. Since there is only one variable in our 
equation, many of conclusions in F-statistic also will be matched by t-statistic. That is, reject 
null hypothesis that b = 0. 

 

Evaluating Assumptions 

Of the various assumptions in our analysis, following assumption lend to some form test 
procedure. 

1. The squared differences between the observed dependent variable value and the predicted 
value are similar for all observations. 

2. Each observation has equal influence on estimated parameters. 

3. Independent variables are not correlated, or correlation among them is low. 

4. If dependent variable is sorted in ascending or descending order, then the estimated 
residuals  (yi − ŷi) are not related  to each other. 
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5. The estimated  residuals  (yi − ŷi) are normally  distributed. 

We will examine each of them below. 

Assumptions and and Tests 
 

Assumption Descriptive Decision Oriented 

Similar varia- 
tion 

Visual inspection or plot observa- 
tion number and particular mea- 
sure 

Student  residuals,   normalized  residual. 
Check for observations with the absolute value 
of normalized residuals ≥ 2. 
Rstudent, value of residual when a particu- 
lar observation is deleted. Check observation 
with the absolute value of Rstudent ≥2. 
Cook’s D, same as above and check observa- 
tion with Cook’s D ≥ 8/[N − 2(k + 1)]. 

Equal Weight 
or influence 

Visual inspection or plot observa- 
tion number and particular mea- 
sure 

COVRATIO, ratio of covariation among in- 
dependent variables based on particular ob- 
servation excluded to one based on total sam- 
ple. If the absolute value of COVARATIO − 1 
is ≥ 3(k + 1)/[N − k − 1], then examine par- 

ticular observation. 
DFFITS indicate change in parameter esti- 
mates taken all together when a particular ob- 
servation is excluded. The absolute value of 

DFFITS ≥ 2
√

(k − 1)/N  considered extreme 
observation. 
DFBETAS indicate change individual para- 
meter estimate, when particular observation 
is exc√luded.  The absolute value of DFBETAS 

≥ 2/   N should be considered extreme obser- 
vation. 

Independent 
variables un- 
correlated or 
collinearity 

Visual inspection of correlations 
and proportion of variance shared 
across variables. 

Variance  inflation   factor  (VIF)  greater 
than 10 is considered a case of multicollinear- 
ity. 

Condition Index, more than 15 to 20 is con- 
sidered a case for multicollinearity. 

Successive er- 
ror terms re- 
lated or auto- 
correlation 

Visual inspection or plot observa- 
tion number and residuals. 

autocorrelation should be equal to zero and 
statistically not significant. 
Durbin-Watson’s  Statistic  farther  away 
from 2 is considered a situation with autocor- 
relation. 

Normality of 
residuals 

Q-Q   or   probability   plot,   for   a 
normally distributed variable, plot 
would be straight line passing 
through origin. 

Tests of skewness, kurtosis and / or other test 
procedure to detect departure from normality. 
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     i=1 i . 
n − 2 

  i=1   i  

(xi − x̄)2 

− 

 
Let us see how all these things apply to our simple example along with some of statistical 
derivations. Suppose our regression equation can be written as 

yi = a + b × xi + Ei i = 1, ··  · , 5. 

For the first observation, then the predicted value is 

ŷ1 = â + ̂bx1 

where â and b̂ are used to denote the estimated intercept and slope respectively.  It follows that 

the  estimated  residual  for  observation  i  is  Êi  = yi − (â + ̂bxi)  and  sum  of  squared  residuals  is 
n 
i=1 Ê

2  and the standard deviation,  often denoted  by s is 

‚
.
, 
Σn Ê2 

 

Note that under the assumptions of linear regression, it can be shown that 

E (â)    =    a 

E (b̂)    =    b 

s2 Σn x2 

 

var(b̂)    = 
 

n 
i=1 

s2 

(xi − x̄)2 

cov(â, ̂b)    = 
s2x̄ Σn     (xi − x̄)2 

i=1 

where  x̄ is the average of xi, i = 1, · · · , 5. 
Suppose we want to know the standard error of the predicted value for the first observations, 
ŷ1,  then  we  determine  the  variance  of ŷ1  and  from  that  we  compute  the  standard  error.  Note 
that variance of ŷ1  is 

var(ŷ1) = var(â) + var(b̂)x2 + 2x1cov(â, ̂b) 
It can be shown that 

var(ŷ  ) = s2 

" 
1  

+ 
 

 

(x1 − x̄)2 
#
 

 

 

1 n 
i=1 

(xi — x̄)2 

and  square  root  of  var(ŷ1)  is  usually  reported  as  the  standard  error  of  prediction.   Note  that 
quantity inside square bracket is called diagonal elements of hat matrix and indicates distance 
between independent variable values for specific observation and the mean values. 
Similarly it can be shown that 

ˆ 2 

" 
1

 (x1 − x̄)2 
#
 

 
 var(E1) = s 1 − 

n 
− Σn (xi 

, 
— x̄)2 

and  square  root  of  var(Ê1)  is  usually  reported  as  the  standard  error  of  residual.   Following 
output indicates that SAS generates numbers as we would expect. 

n 

n 
i=1 

i=1 

s = 

var(â)    = 

, 
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Σ 

i=1 

1 
3 5 10 5 

 
 
 
 

 

Obs 
Dep Var 

Y 
Predict 

Value 
Std Err 
Predict 

 

Residual 
Std Err 

Residual 
Student 

Residual 

 
1 

 
0 

 
-0.4000 

 
0.469 

 
0.4000 

 
0.383 

 
1.044 

2 0 0.3000 0.332 -0.3000 0.507 -0.592 
3 1.0000 1.0000 0.271 0 0.542 0.000 
4 1.0000 1.7000 0.332 -0.7000 0.507 -1.382 
5 3.0000 2.4000 0.469 0.6000 0.383 1.567 

     
Cook’s 

  
Hat 

 
Diag 

 
Cov 

 

Obs -2-1-0 1 2 D Rstudent  H Ratio Dffits 

 
1 

 
| |** 

 
| 

 
0.818 

 
1.0690 

 
0.6000 

 
2.2779 

 
1.3093 

2 | *| | 0.075 -0.5145 0.3000 2.5068 -0.3368 
3 | | | 0.000 0.0000 0.2000 2.8125 0.0000 
4 | **| | 0.409 -1.8708 0.3000 0.4250 -1.2247 
5 | |*** | 1.841 3.0000 0.6000 0.1860 3.6742 

 
INTERCEP X 

 

Obs Dfbetas Dfbetas 

1 0.7559 -1.0690 

2 -0.2750 0.1945 
3 0.0000 0.0000 
4 -1.0000 -0.7071 
5 2.1213 3.0000 

 

Sum  of  Residuals 0 
Sum  of  Squared  Residuals 1.1000 
Predicted Resid SS (Press) 4.4337 

Note that in this example, 
 

var(ŷ  ) = s2 

" 
1  

+ 
 

 

 
(x1 − x̄)2 

#
 

1 n 
i=1 

(xi — x̄)2 

where  s2  is  sum  of  squared  residuals  divided  by  (n − 2)  or  3  in  this  case.  Furthermore,  x̄ = 0  

and 
Σ5

 (xi − x̄)2 = 10.  This  results  in 

var(ŷ  ) =  
1.1 

  
1 

+ 
 4  

 

=  
1.1

 

n , 
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and square root of 0.22 results in the standard error of prediction of 0.469 for this observation. 
Similarly, 

ˆ 2 

" 
1

 (x1 − x̄)2 
#
 

 
 

var(E1)   =   s 1 − 
n 
− Σn (xi 

, 
— x̄)2 

= 
1.1 

  
1 

1 4  

= 0.14667, 

and square root of this is 0.383. Note that column Student Residual is ratio of  column 
Residual to Std Err Residual. Note that all  other  remaining  measures  reported  above 
(Cook’s D, Rstudent etc.) require estimate based on particular observation being deleted. 
For example,  estimating  a  and  b  when  first  observation  is deleted,  denoted  by  â(1)  and b̂(1) . It 
is possible to obtain these estimate without actually conducting separate regression analyses. 
Thus, 

 

â(1) = 
Ê1

 
 

 â − 
n(1 − h   ) 

b̂ =    ̂b − 
xiÊ1 

, 
 

(1) (1 − h11 n 
i=1 (xi — x̄)2 

where h11 is diagonal elements of hat matrix or H (see notes above). For the first observation, 

â(1)  and  ̂b(1)  is  equal  to  0.8  and  0.9  respectively.   Similarly,  RSTUDENT  is  normalized  residual 
when ith observation is excluded from analysis. For the first observation, 

E1 
RSTUDENT(1) = 

s(1) 

, 
1 − h11 

where s(1) is estimated standard error when the first observation is excluded and that can be 
estimated by 

(1) = 
  1  
n − p − 1 

(n − p)s2 − 
2 
1 

 

1 − h11 

= 
  1 

(4 − 1)
 1.1 

− 
0.4 × 0.4  

4 − 1 − 1 5 − 1 − 1 1 − 0.6 
=  0.5 × (1.1 − 0.4) = 0.35. 

Then substituting square root of 0.35 in expression of RSTUDENT to obtain 
0.4 

RSTUDENT(1) = 
0.5916

√
0.4 

= 1.069, 

which is reported for the first observation. 

A Realistic Example 

As you might be aware that computer system vary dramatically in prices. My interest in 
following example is to use regression analysis to predict likely prices that may be charged 

s 
E 

√ 
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by retailers. Using variety of sources including retailer websites and local Pennysaver, in 
December 2001, I compiled information about 40 Desktop systems. Although each computer 
can be characterized by number of features, I focused on four attributes; central processing unit 
(CPU) speed in MHz, amount of random access memory in megabytes (RAM), Size of hard 
disk in gigabytes (HARDDISK) and size of monitor in inches (smallest screen that one can buy 
is 15inches). My SAS input follows: 

options nocenter nodate ps=80 ls=80; 
data pc; 
input price cpu ram harddisk monitor retail $ cpu_type $; 
cards; 

828.00 1000 128 20 17 Selltek EZ  Celeron  
949.00 1400 128 20 17 Pctek Pentium 4 
969.98 1000 256 40 17 Datamatrix Celeron 
978.00 800 256 20 17 Selltek Power 800Mhz  Celeron 

1009.99 900 128 60 17 FutureShop eMachines  Celeron 
1068.00 1000 256 20 17 Selltek Power 1000Mhz Celeron 
1128.00 1300 256 20 17 Selltek Power 1300Mhz Pentium 4 
1149.99 1400 256 20 17 TCC System  #1  Pentium  4 
1169.99 1200 256 40 17 TCC System #2 AMD K7 
1176.53 1100 128 20 15 Gateway 300Cb Celeron 
1199.00 1100 128 40 17 Business Depot HP  7917 /  Pavilion Celeron 
1229.99 1100 256 20 17 FutureShop Compaq  5310  Celeron  

1238.53 1000 128 20 15 Gateway E1800 Celeron  

1249.00 1100 256 40 17 RadioShack Compaq Presario 5310CA Celeron 
1249.98 1500 256 40 17 Datamatrix Pentium  4  

1249.99 1000 192 60 17 FutureShop HP  XT858  Pentium  3  

1249.99 1200 256 40 17 FutureShop Cicero SC2511 Celeron  

1269.98 1600 256 40 17 Datamatrix AMD K7  

1299.99 1300 128 40 17 FutureShop HP 7935 AMD Athlon  

1329.99 1200 256 40 17 FutureShop Compaq  5320  Celeron  

1349.00 1200 256 40 17 RadioShack Compaq Presario 5320CA Celeron 
1378.00 1200 256 40 17 Selltek Ultimate 1200Mhz Pentium 3 
1399.00 1100 128 20 17 Dell Dimension 2100 Celeron  

1478.00 1600 256 40 17 Selltek Ultimate 1600Mhz Pentium 4 
1549.00 1600 256 20 17 Dell Dimension 4300S Pentium 4  

1549.99 1200 256 60 17 FutureShop Sony PC540  Celeron  

1628.00 1800 256 40 17 Selltek Ultimate 1800Mhz Pentium 4 
1649.99 1500 256 60 17 FutureShop eMachines  Pentium  4  

1749.00 1500 256 60 17 RadioShack Compaq Presario 5330CA Pentium 4 
1749.00 1700 256 40 17 Pctek Pentium 4  

1749.00 1000 256 40 17 Business Depot Compaq  Presario 5330CA  Celeron 
1849.99 1700 256 60 19 TCC System  #3  Pentium  4 
1899.00 1500 256 40 17 RadioShack HP  7955/MX70  Pentium  4 
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1949.97 1700 256 60 17 FutureShop Cicero SC6411  Pentium  4 
2010.48 1500 256 20 17 Gateway 500Sb Pentium  4 
2019.99 1700 256 40 17 FutureShop Compaq 5340 Pentium 4 
2149.00 1700 512 80 17 Business Depot HP 7965 / Pavilion Pentium 4 
2509.00 1900 256 20 19 Dell Dimension 8200 Pentium 4 
2649.00 1800 512 60 17 Business Depot Compaq Presario 5350CA Pentium 4 
2649.99 2000 512 80 17 FutureShop HP  7975  Pentium  4 
;;;;      

proc reg; 
model price = cpu ram harddisk monitor ; run; 

 
 

SAS output is as follows: 
 
 

Model: MODEL1 
Dependent Variable: PRICE 

Analysis of Variance 

 

Source 
 Sum of 

DF Squares 
Mean 

Square 
 

F Value 
 

Prob>F 

Model 
 

4 5896914.7629 1474228.6907 22.511 0.0001 
Error  35 2292100.5421 65488.586918   

C Total  39 8189015.305    

Root MSE 255.90738 R-square 0.7201 
 

Dep Mean 1497.70800 Adj R-sq 0.6881 
C.V. 17.08660   

 
Parameter Estimates 

 
Parameter Standard T for  H0: 

Variable DF Estimate Error Parameter=0 Prob >  |T| 

INTERCEP 1 -526.647108 1120.2966356 -0.470 0.6412 

CPU 1 0.833024 0.17123187 4.865 0.0001 
RAM 1 1.524821 0.61138600 2.494 0.0175 
HARDDISK 1 2.781324 2.87411046 0.968 0.3398 
MONITOR 1 24.098373 69.51531811 0.347 0.7309 

 
 

Here are my observations in point form. 
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The null hypothesis states that variation in price can not be explained by CPU speed, 
amount RAM, size of hard disk and size of monitor. We reject this hypothesis, because 
probability of F-statistic is less than or equal to 0.05. 

• We are explaining about 72% of variation in price by these four variables. 

• Regression equation can be written as 

Price =  −526.65 + 0.833 × CPU + 1.525 × RAM 

+ 2.781 × HARDDISK + 24.098 × MONITOR. 
 

Note that the parameter associated with variables CPU and RAM have correct signs 
and statistically significant (probability of t-statistic is less than 0.05). 

The parameters associated with variables HARDDISK and MONITOR have correct sign 
but statistically not significant. That means, these parameters could be equal to zero. 

• Consider a desktop with 1 Ghz, with 256 Megabytes of RAM, about 40 gigabytes hard 
drive and 17 inches MONITOR. For such machine, I should be expected to pay about 
$1,218. This is concluded as follows: 

 

Price =  −526.65 + 0.833 × 1000 + 1.525 × 256 + 2.781 × 40 + 24.098 × 17. 

=  −526.65 + 833 + 390.4 + 111.24 + 409.67 

= 1217.66 

 
Note that holding everything else same, if we decide to purchase desktop computer with 1.5 
Ghz CPU, price of computer would go up by $416.5. A constructed equation like this would be 
useful tool to understand competitive market behaviour. Let us turn our attention to evaluating 
assumptions. First SAS input and then followed by relevant output. 

 

proc reg data=pc; 
model price = cpu ram harddisk cdrom / collinoint r dw influence vif ; 
id brand; 
output out=predpc 
residual=resprc student=stprc dffits=dfprc covratio = covprc; 

run; 

 
 1 2 3 4 5 6 

 

Obs 
 

RETAIL 
Dep Var 

PRICE 
Predict 

Value 
Std Err 
Predict 

 

Residual 
Std Err 

Residual 
Student 

Residual 

 

1 
 

Selltek 
 

828.0 
 

966.9 
 

75.171 
 

-138.9 
 

244.618 
 

-0.568 
2 Pctek 949.0 1300.1 84.236 -351.1 241.646 -1.453 
3 Datamat 970.0 1217.7 74.704 -247.7 244.761 -1.012 

4I would think that desktops with faster CPUs should be more expensive than slower CPUs. 

• 

4 • 

• 
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4 Selltek 978.0 995.4 117.797 -17.4251 227.184 -0.077 
5 FutureS 1010.0 994.8 125.129 15.1867 223.229 0.068 
6 Selltek 1068.0 1162.0 92.814 -94.0298 238.483 -0.394 
7 Selltek 1128.0 1411.9 71.552 -283.9 245.701 -1.156 
8 TCC 1150.0 1495.2 71.607 -345.2 245.685 -1.405 
9 TCC 1170.0 1384.3 49.600 -214.3 251.055 -0.853 

10 Gateway 1176.5 1002.0 142.267 174.6 212.718 0.821 
11 Busines 1199.0 1105.8 77.940 93.2184 243.750 0.382 
12 FutureS 1230.0 1245.3 82.844 -15.3422 242.127 -0.063 
13 Gateway 1238.5 918.7 138.660 319.9 215.086 1.487 
14 RadioSh 1249.0 1301.0 61.051 -51.9587 248.518 -0.209 
15 Datamat 1250.0 1634.2 46.662 -384.2 251.617 -1.527 
16 FutureS 1250.0 1175.7 101.098 74.2958 235.091 0.316 
17 FutureS 1250.0 1384.3 49.600 -134.3 251.055 -0.535 
18 Datamat 1270.0 1717.5 57.060 -447.5 249.465 -1.794 
19 FutureS 1300.0 1272.4 81.196 27.6037 242.685 0.114 
20 FutureS 1330.0 1384.3 49.600 -54.2711 251.055 -0.216 
21 RadioSh 1349.0 1384.3 49.600 -35.2611 251.055 -0.140 
22 Selltek 1378.0 1384.3 49.600 -6.2611 251.055 -0.025 
23 Dell 1399.0 1050.2 71.640 348.8 245.675 1.420 
24 Selltek 1478.0 1717.5 57.060 -239.5 249.465 -0.960 
25 Dell 1549.0 1661.8 83.082 -112.8 242.045 -0.466 
26 FutureS 1550.0 1439.9 76.358 110.1 244.250 0.451 
27 Selltek 1628.0 1884.1 84.689 -256.1 241.488 -1.060 
28 FutureS 1650.0 1689.8 72.395 -39.8047 245.454 -0.162 
29 RadioSh 1749.0 1689.8 72.395 59.2053 245.454 0.241 
30 Pctek 1749.0 1800.8 70.148 -51.7730 246.105 -0.210 
31 Busines 1749.0 1217.7 74.704 531.3 244.761 2.171 
32 TCC 1850.0 1904.6 144.629 -54.6063 211.118 -0.259 
33 RadioSh 1899.0 1634.2 46.662 264.8 251.617 1.053 
34 FutureS 1950.0 1856.4 88.206 93.5705 240.226 0.390 
35 Gateway 2010.5 1578.5 75.643 431.9 244.472 1.767 
36 FutureS 2020.0 1800.8 70.148 219.2 246.105 0.891 
37 Busines 2149.0 2302.4 134.871 -153.4 217.482 -0.705 
38 Dell 2509.0 1959.9 160.628 549.1 199.216 2.756 
39 Busines 2649.0 2330.1 128.694 318.9 221.193 1.442 
40 FutureS 2650.0 2552.3 136.722 97.7026 216.323 0.452 

 

column is values of dependent variable (yi). This variable is sorted in ascending order to help 
us interpret other statistical measures. 

column is predicted values  for dependent variable  (ŷi).  For  the  first observation, 

ŷ1 = −526.65 + 0.833 × 1000 + 1.525 × 128 + 2.781 × 20 + 24.098 × 17 = 966.9. 

column is the standard error associated with predicted values, a larger number indicates that 
values of independent variables are farther away from the “average” observation. For the first 

observation independent variable vector, x1 is [110001282017]. Then Var(y1) = s2xJ

1(XJX)−1x. 

column is residual or  error values,  (yi − ŷi). 

column is the standard error associated with error, and again a larger number indicates that 
values of independent variables are farther away from the “average” observation. 

column the Student residuals are also called normalized (generally normalized means divided by 
the standard error) residuals. If residuals are normally distributed then normalized residuals 
more than 2 should be considered extreme observations. 

1 

2 

3 

4 

5 

6 
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N−2(k+1) 

 

 
 7 8 9 10 11 

 
Obs 

 
RETAIL 

 
-2-1-0  1  2 

Cook’s 
D 

 
Rstudent 

Hat Diag 
H 

Cov 
Ratio 

 

1 
 

Selltek 
 

| 
 

*| 
 

| 
 

0.006 
 

-0.5621 
 

0.0863 
 

1.2080 
2 Pctek | **| | 0.051 -1.4771 0.1083 0.9499 
3 Datamat | **| | 0.019 -1.0123 0.0852 1.0893 
4 Selltek | | | 0.000 -0.0756 0.2119 1.4655 
5 FutureS | | | 0.000 0.0671 0.2391 1.5182 
6 Selltek | | | 0.005 -0.3895 0.1315 1.3018 
7 Selltek | **| | 0.023 -1.1614 0.0782 1.0323 
8 TCC | **| | 0.034 -1.4258 0.0783 0.9381 
9 TCC | *| | 0.006 -0.8501 0.0376 1.0812 

10 Gateway | |* | 0.060 0.8168 0.3091 1.5181 
11 Busines | | | 0.003 0.3777 0.0928 1.2478 
12 FutureS | | | 0.000 -0.0625 0.1048 1.2906 
13 Gateway | |** | 0.184 1.5144 0.2936 1.1807 
14 RadioSh | | | 0.001 -0.2062 0.0569 1.2181 
15 Datamat | ***| | 0.016 -1.5577 0.0332 0.8471 
16 FutureS | | | 0.004 0.3119 0.1561 1.3503 
17 FutureS | *| | 0.002 -0.5293 0.0376 1.1528 
18 Datamat | ***| | 0.034 -1.8553 0.0497 0.7511 
19 FutureS | | | 0.000 0.1121 0.1007 1.2830 
20 FutureS | | | 0.000 -0.2132 0.0376 1.1931 
21 RadioSh | | | 0.000 -0.1385 0.0376 1.1977 
22 Selltek | | | 0.000 -0.0246 0.0376 1.2010 
23 Dell | |** | 0.034 1.4417 0.0784 0.9323 
24 Selltek | *| | 0.010 -0.9588 0.0497 1.0645 
25 Dell | | | 0.005 -0.4609 0.1054 1.2525 
26 FutureS | | | 0.004 0.4456 0.0890 1.2325 
27 Selltek | **| | 0.028 -1.0624 0.1095 1.1026 
28 FutureS | | | 0.000 -0.1599 0.0800 1.2518 
29 RadioSh | | | 0.001 0.2379 0.0800 1.2461 
30 Pctek | | | 0.001 -0.2075 0.0751 1.2420 
31 Busines | |**** | 0.088 2.3001 0.0852 0.6132 
32 TCC | | | 0.006 -0.2552 0.3194 1.6823 
33 RadioSh | |** | 0.008 1.0542 0.0332 1.0181 
34 FutureS | | | 0.004 0.3847 0.1188 1.2836 
35 Gateway | |*** | 0.060 1.8247 0.0874 0.7939 
36 FutureS | |* | 0.013 0.8881 0.0751 1.1145 
37 Busines | *| | 0.038 -0.7001 0.2778 1.4900 
38 Dell | |***** | 0.988 3.0699 0.3940 0.5613 
39 Busines | |** | 0.141 1.4654 0.2529 1.1392 
40 FutureS | | | 0.016 0.4465 0.2854 1.5711 

 

column is a plot of normalized residuals and these numbers generally vary between −2 and 2. 

column Cook’s D is a summary measure of the influence of a single observation on the total 
changes in all other residuals when observation is excluded from the estimation. In our case, 
Cook’s D ≥ 8 

 

vation number 38). 

is   8  
40−10 

or 0.267 would be considered influential observation (see obser- 

column Rstudent is similar to Cook’s D with the exception that error variances are estimated 

using without the ith observation. 

column Hat Diag H (Diagonal   of Hat matrix H, also sometimes denoted as hii)  is a ratio 
of variability for an observation to the sample variability in independent variables. If each 
observation has equal influence on regression equation, then the average influence would be 

7 

8 

9 
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√ 

− ± 
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k/N and observation with hii 2k/N ( 2 4/40 or 0.2 for our example) would be considered an 
influential observation. There are number of observations with such problem, especially towards 
the end of dataset or higher priced desktop systems. 

column Cov ratio (Covariance ratio) is a ratio covariances when ith observation is excluded to 
the sample covariances. A value of COVRATIO close to 1 indicates the “average” influence by 
an observation while the absolute value of (COVRATIO - 1) ≥ 3(k+1)  is considered significant 

(3×5) N−k−1 

influential observation. For our case, COVRATIO 1 + 
with higher than the normal influence. 

35 or 1.429 would be observations 

 
 12 13 

INTERCEP CPU 
14 

RAM HARDDISK MONITOR 
Obs RETAIL Dffits Dfbetas Dfbetas  Dfbetas Dfbetas Dfbetas 

 

1    Selltek -0.1727 0.0247 0.0545 0.0464 0.0452 -0.0475 
2    Pctek -0.5149 -0.0181 -0.2738 0.3160 0.1419 0.0082 
3    Datamat -0.3090 0.0441 0.2592 -0.1324 -0.0097 -0.0805 
4    Selltek -0.0392 0.0064 0.0313 -0.0246 0.0178 -0.0112 
5    FutureS 0.0376 -0.0033 -0.0141 -0.0194 0.0289 0.0060 
6    Selltek -0.1516 0.0202 0.0975 -0.0948 0.0900 -0.0370 
7    Selltek -0.3382 0.0097 0.0394 -0.1628 0.2732 -0.0289 
8    TCC -0.4156 -0.0079 -0.0510 -0.1541 0.3406 -0.0035 
9    TCC -0.1679 0.0129 0.0963 -0.0550 -0.0019 -0.0286 

10    Gateway 0.5463 0.4983 0.1465 -0.1210 -0.0494 -0.4755 
11    Busines 0.1208 -0.0088 -0.0148 -0.0839 0.0572 0.0186 
12    FutureS -0.0214 0.0023 0.0110 -0.0129 0.0144 -0.0044 
13    Gateway 0.9763 0.8897 0.1480 -0.1664 -0.0844 -0.8332 
14    RadioSh -0.0507 0.0060 0.0378 -0.0200 -0.0012 -0.0116 
15    Datamat -0.2889 -0.0400 -0.1420 0.0457 0.0129 0.0500 
16    FutureS 0.1341 -0.0109 -0.0632 -0.0440 0.1029 0.0203 
17    FutureS -0.1046 0.0081 0.0600 -0.0343 -0.0012 -0.0178 
18    Datamat -0.4244 -0.0735 -0.2979 0.1135 0.0222 0.1011 
19    FutureS 0.0375 0.0006 0.0114 -0.0323 0.0162 0.0005 
20    FutureS -0.0421 0.0032 0.0242 -0.0138 -0.0005 -0.0072 
21    RadioSh -0.0274 0.0021 0.0157 -0.0090 -0.0003 -0.0047 
22    Selltek -0.0049 0.0004 0.0028 -0.0016 -0.0001 -0.0008 
23    Dell 0.4204 -0.0429 -0.0386 -0.1647 -0.1206 0.0891 
24    Selltek -0.2193 -0.0380 -0.1540 0.0586 0.0115 0.0522 
25    Dell -0.1582 -0.0157 -0.0820 -0.0206 0.1151 0.0198 
26    FutureS 0.1393 -0.0039 -0.0573 -0.0179 0.1059 0.0096 
27    Selltek -0.3726 -0.0736 -0.3269 0.1364 0.0209 0.1082 
28    FutureS -0.0472 -0.0053 -0.0130 0.0218 -0.0361 0.0073 
29    RadioSh 0.0702 0.0079 0.0193 -0.0324 0.0537 -0.0109 
30    Pctek -0.0591 -0.0112 -0.0482 0.0195 0.0033 0.0161 
31    Busines 0.7020 -0.1003 -0.5891 0.3008 0.0221 0.1828 
32    TCC -0.1748 0.1476 -0.0115 0.0553 -0.0555 -0.1411 
33    RadioSh 0.1955 0.0271 0.0961 -0.0309 -0.0088 -0.0339 
34    FutureS 0.1413 0.0240 0.0868 -0.0788 0.0859 -0.0357 
35    Gateway 0.5646 0.0358 0.1934 0.1394 -0.4446 -0.0366 
36    FutureS 0.2531 0.0480 0.2063 -0.0835 -0.0140 -0.0689 
37    Busines -0.4342 -0.0433 0.0669 -0.2616 -0.1292 0.0694 
38    Dell 2.4752 -1.8277 0.7657 -0.1447 -1.0910 1.7273 
39    Busines 0.8526 0.1007 -0.0045 0.6588 -0.1207 -0.1584 
40    FutureS 0.2822 0.0490 0.0631 0.1189 0.0774 -0.0786 

 

column Dffits indicates influence of an observation on the overall fit of model. DFFITS outside 

of range 2    (k 1)/N is considered influential observation. In our case, 2   3/40 or 0.548 

would be an influential observations. 
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columns DFBETAs indicate influence of particular observation on a specific parameter 

estimate. Observations outside   2 
√    

would influencing particular observations. In our case, 

the appropriate range is 2/
√

40 or 0.316. There will one DFBETA for each parameter 
estimated. In our case there are five such measures. 

 
 

Variable 

 

DF 

15 

Variance 
Inflation 

INTERCEP 1 0.00000000 
CPU 1 1.67434954 
RAM 1 1.87908442 
HARDDISK 1 1.46192377 
MONITOR 1 1.18063429 

 
 

Collinearity Diagnostics(intercept adjusted) 

   
Condition    Var Prop    Var Prop    Var Prop    Var Prop 

Number  Eigenvalue Index      CPU RAM HARDDISK  MONITOR 

 
1 2.18504 1.00000 0.0823 0.0783 0.0767 0.0513 
2 0.89578 1.56181 0.0180 0.0542 0.1508 0.6471 
3 0.57072 1.95667 0.3952 0.0459 0.5049 0.2253 
4 0.34845 2.50413 0.5045 0.8216 0.2676 0.0762 

 

Durbin-Watson    D 
 

1.634 

 

19 

(For Number of Obs.) 40  

1st Order  Autocorrelation 0.177 20 

 

Sum  of  Residuals 0 
Sum  of  Squared  Residuals 2292100.5421 
Predicted Resid SS (Press) 3350277.8100 

 
column variance inflation is a measure of collinearity among independent variables and a larger 
number indicates that variables highly correlated. This does not appear to be a problem in our 
illustration. 

column eigenvalue is another measure of degree to which independent variables are correlated. 
(see the next item for interpreting these). 

column condition index is square root of the ratio of largest eigenvalue to a particular eigenvalue. 

columns var prop (proportion of variance shared) is degree to which two or more variables have 
common variability. 

, are measures of whether successive error terms are correlated. 
 

There is a graphical alternative to visualizing various diagonistics discussed above. Consider measure 
COVRATIO. If observations are sorted in ascending or descending order, then plot of COVRATIO and 
observation number could be used to visually understand nature of violations related to this measure.  
Several of such graphs are provided for illustrative purposes. 
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Note that there are seven observations outside the limits. 
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Note that there are four observations outside the limits and observation number 38 is particularly 
noteworthy. 
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Note that there are two observations outside the limits. 
 
 

The purpose of this material is to provide procedures that can be used to evaluate the univariate 
normality. If tests reveal problems, then it is advisable to turn to the alternative approaches to 
analysis, including transformation or weighted least squares. 

The moments around the mean of a distribution reveal departures from normality. Suppose we 
have a random variable y with a population mean of µ1, then the rth moment about the mean is 
defined as 

µr = E (y − µ1)r, for r > 1, 

where    is used to denote the expected value or the average. If we know mean (µ1) and its variance 

(µ2), then it is possible to describe the univariate normal distribution. This is because its higher-order 
moments are either zero or can be written as functions of mean or variance. Consequently, if we 
examine and test higher order moments, it should be possible to detect departures from normality. 
We will look at the second, third and fourth moments for a sample and population below. 

The Sample Variance 

The population variance (µ2) is the expected value of the squared difference of the values from the 
population mean: 

µ2 = E (y − µ1)2. 

The sample variance (s2) is usually computed as 
 

N 
2 = ( 

(N − 1) 
i=1

 
i − ȳ)2. 

N 
− √ 

Testing Normality 
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b2 + 
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Test of Skewness to Detect Non-normality 

Skewness is a measure of the tendency of the deviations to be larger in one direction than in the other. 

A population skewness is defined as 
(y  µ1)3 

3/2 
. 

2 

The sample third moment (g1) is computed as5
 

N 
ΣN    (yi − ȳ)3

 

(N − 1)(N − 2) s3 

The coefficient of skewness (CS) or 
√

b1 is 

CS = 
√

b1 = 
N − 2 

N (N − 1) 

 

g1. 

For a normally distributed variable, CS is 0. Moreover, if CS is negative and statistically significant, 
then skew is to the left. On the other hand, if CS is positive, then skew is to the right. In the large 
samples, hypothesis test for CS can be performed by converting CS as a unit normal deviate. That is, 

 
z√b1

 

 
 

= 
CS(N + 1)(N + 3) 

6(N − 2) 

where the undetermined sign is the same as that of the third moment and this quantity is approximately 
normally distributed under the null hypothesis of population normality. 

Tests of Kurtosis to Detect Non-Normality 

The heaviness of the tails is measured by kurtosis or the coefficient of kurtosis (b2). The population 
kurtosis is defined as 

µ4 = 

The sample fourth moment is calculated as 

E (y − µ1)4
 

 

 

2 

— 3. 

N (N + 1) 
ΣN    (yi − ȳ)4

 3(N − 1)2
 

 

i=1 
g2 = 

(N − 1)(N − 2)(N − 3) s4 
− 

(N − 2)(N − 
3) 

.
 

To convert fourth moment to kurtosis (b2) we need to compute 

b = 3 
N − 1 

+ 
(N − 2)(N − 3) 

g2.
 

2 
N + 1  (N + 1)(N − 1) 

For a normally distributed variable, b2 is equal to 3. In large samples, hypothesis test for b2 can be 
performed by converting b2 as a unit normal deviate. That is, 

h   6 i
s

(N + 1)2(N + 3)(N + 5) 

 
5PROC UNIVARIATE in SAS reports the third and fourth moments but not coefficent of skewness and 

kurtosis as indicated below. 

µ 

zb2 = 
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and this estimate is approximately normally distributed under the null hypothesis of population nor- 
mality. Note that values less than zero indicate that the distribution is more peaked with longer tails 
than the normal distribution; values greater than zero indicate flatter distribution in the centre and 
with shorter tails than the normal distribution. 
Omnibus Tests of Normality 

It is possible to combine test of skewness and kurtosis into one test that detects departure from 
normality due to either of these measures. Such tests are called omnibus. The test statistic 

 

K2  = z√2  2 

 

where the K2 statistic has approximately a chi-square (χ2) distribution, with 2 degrees of freedom 
when the population is normally distributed. 

There are many other tests to determine departure of a variable from normality. The program 

NORMTEST also prints statistic called Shapiro-Wilk test6. It is based on assumption that ordered 
observations of normally distributed variable will have equal and similar weights. Thus, if weight 
assigned to the first observation (the lowest value of yi, let us call it y(1)) is 1/N and the second 
observation (one that is more than or equal to y(1), let us call it y(2)) will have weight of 2/N and so 
on7. The test statistic of Shapiro-Wilk (W) is 

 
N 

W = 
i=1 

 
aiy 

 
2 

(i) 

N 
i=1 (yi − ȳ)2 

where ai is weight associated with i observation and variable y is ordered such that y(1) y(2) 

y(N ). Small values of W correspond to departure from normality. 
We will examine below SAS input and output to conduct these tests. As you have seen above, 

numerical calculations involved in above are extensive. To assist you with these calculations, I have a 
SAS macro8 To access this macro, I would use following SAS input. 

 
%include "c:\sas6_12\normtest.sas"; 
%normtest(stprc,predpc); 

 

In this instance predpc is name of SAS dataset and stprc is a variable whose normality is being 
tested. SAS will produce two sorts of outputs; one graphical and another textual. These follow here. 
First SAS and then graphical output. 

 
Normality Test for variable stprc N=40 

 
6Shapiro, S. S. and Wilk M. B. (1965) “A analysis of variance test for Normality”, Biometrika, vol. 52, 

591–611. 
7This is intuitive description of the statistic and not the exact method. 
8This macro is modified version of as it appeared in American Statistician and it was originally written 

by D’Agostino Ralph B., Albert Belanger and Ralph B. D’Agostino Jr. (1990) “A Suggestion for Using Pow- 
erful and informative Tests of Normality”, Vol. 44, pp. 316–321. The macro for your usage is kept in file 
G:\courses\COST6060\NORMTEST.SAS. 
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G1=0.592 SQRTB1=0.569 z = 1.598 prob = 0.1101 
G2=0.239 B2=3.064 z = 0.554 prob = 0.5798 

 

K**2 =  Chisquare (2  df)  = 2.860 prob = 0.2393 
Shapiro-Wilk  Test  = 0.966 Prob = 0.3704 

These numbers indicate that residuals have slight skew to the right (since 
√

b1 is 0.569) and we 
would accept the null hypothesis that residuals are normally distributed. We also conclude that the 
coefficient of kurtosis is close to normally distributed variable. Both K2 and Shapiro-Wilk test indicate 
that we may accept null hypothesis that residuals are normally distributed. 
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Revise Model to  meet Assumptions 

 
• Failure of Similar variation or equal influence 

1. Transform dependent variable, or independent variable or both. 

2. Exclude observations with more influence. 

3. Apply weighting scheme that are managerially or statistically meaningful. 

4. Estimate model with weighted least squares or the least absolute deviation. 

• Presence of Collinearity 

1. Create new index variables that may capture correlations among independent variables 
either conceptually (for example SES, instead income, occupation and education etc.) 

2. Determine stability of parameters by excluding one or more variables. 

3. Use statistical procedures for dealing with this problem, for example, transformation, 
alternative criterion to minimize. 

• Lack of Independence of successive error values 

1. May be caused by missing variables, competitive variables or customer loyalty, then include 
missing variables. 

2. Re-estimate model with autocorrelated errors. 

• Error values not normally distributed 

1. Use non-normal distribution to estimate parameters. 

2. Use transformation convert dependent variable so that new variable is normally distributed. 

3. Break sample in subsegments and estimate parameters for each subsegment. 

 
Validate Revised Model 

 
1. Use limited number of explanatory variables. Avoid using all variables to be included in your 

regression model. If there are large number of variables, then create indices, groupings with 
conceptual idea. Then, use selected such variables to estimate models. 

2. Use a large sample, 40 - 50 observations per variable included will have better stability to 
estimates than 5 - 10 observations. 

3. Validate your model with hold-out or split-half sample or new sample. 
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• Moderating effects of variables 

1. By group differences, 

2. Interaction effects, 

3. Effect occur only at certain level. 

Mediating effects of variables. I will indicate first by picture that variable x affects y and variable 
w affects x. If you include, say variable w and regressed on y, we may get unexpected results. 

 
 

 

Alternatively, this could be written in form of equations as follows. 

y =   a + bx + ey 

x = c + dw + ex 

 

• Not-linear effects. 

• Effects associated with data collection. 

1. Measurement errors, 

2. Response effects, 

3. Truncation of variables. 
 

 

A simple model that you may be familiar with, viz., 

y = Xβ + u (1) 

where y is (y1, y2,       , yN )J,   u is (u1, u2,       , uN )J,   and β is (β1, β2,       , βk)J   are vectors,   and X 

(X1, X2,      , XN )J is matrix and    is used to denote transpose of a matrix or a vector. In this model, 
vector y of size N 1 is called dependent variable and matrix X of size N k is a set of independent 
variables. In estimation of parameter vector β, I am interested in the “best” possible estimate. In the 
following discussion I want to demonstrate to you that two of the commonly used estimators, least 
squares and maximum likelihood, are the same for the above model. 

Limitations of Regression Analysis 

• 

w x y 

Estimating Regression Model using Matrix Algebra 
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In the least squares method, I want to find β̂  of the regression parameter β so as to minimize the sum 
of squared residuals. Mathematically I may write 

Minimize f (β)    =    (y − Xβ)J(y − Xβ) (2) 

=   yJy − 2yJXβ + β JXJXβ 

To minimize this function, I obtain the first derivative of f (β) with respect to β and set equal to 
zero. Thus, I may write 

 

∂β 
=  −2XJy + 2XJXβ = 0 or 

β̂ =    (XJX)−1X J y (3) 

It  is  can  be  shown  that  that    (β̂) = β  and     (β̂) = σ2(X JX)−1  where      and      denote  statistical 
expectation and variance respectively. 

I made four important assumptions in deriving these estimates. First, it is assumed that (u) = 0 
and implies that the mean of random noise is  zero.  Second,  it  is also  assumed that  (XJu)  = 0 
and implies that random noise values and independent variable values are not correlated. Third 
assumption requires that (uuJ) = σ2IN where IN  denotes an identity matrix of size N N . In 

words, this assumption requires that each element of random noise vector u be independent and 
identically distributed. This assumption is clearly violeted if the observed dependent variable takes 
either 0 or 1 values. (As an excercise you may show this). Similarly, if sucessive values of dependent 
variable are related, as in case of time series data, then this assumption is also violeted. Finally, 
matrix (XJX) is nonsingular, which is equivalent to stating rank of matrix X is k. Note that a mere 

presence of high correlation among the set of independent variables does not violet this assumption. 

It is also possible to show (with lot of algebraic manipulation) that the estimated value of σ2 is 
(ûJû)/(N      k).  Note also that second derivatives of f (β) with respect to β are positive.  This assures 
me that I have actually minimized the function. 

 

 

 

Suppose I assume further that u vector is normally distributed. This is an extension to the third 
assumption that I have written above. Then, likelihood of observing u1 is given by 

1 u2 
f (u1) = √ exp(− 

2 
1 ) (4) 

2πσ2 σ2
 

If there are N independent observations, then the joint likelihood of observing f (u1),f (u2), · · ·  ,f  (uN ) 
will be denoted by L and may be written as 

Least Squares Estimator 

Maximum Likelihood Estimation 
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log L = −
N 

log(2π) − 
N 

log σ2 −
  1   Σ 

u2. 

2 2 2σ2 

2 2 2σ2 

 
 
 

L  =   f (u1) × f (u2) × · · ·  × f (uN ) 

=
 1 N 

exp( 
ΣN    u2 

)
 

=  (2 ) exp(   

ΣN   u2 

) (5) 

Instead of using likelihood, it is customary in the literature to use logarithm of likelihood. Thus 
taking the logarithm of equation (5), I may obtain 

 

 

2 2 

Above equation in matrix form can be written as 

2σ2 
i 

i=1 

log L  =   −
N 

log(2π) − 
N 

log σ2 − 
  1  

uJu 

=    −
N 

log(2π) − 
N 

log σ2 − 
  1   

(y − Xβ)J(y − Xβ) (6) 

The maximum likelihood estimator of the regression parameter vector is an estimator that maximizes 
likelihood function (or log of likelihood function). To maximize log L, I would take the derivatives of 

log L with respect to β and σ2 and set equal to zero. Thus, I may write 
 

∂ log L 

∂β 

∂ log L 

=   −
  1  

(−2XJy + 2XJXβ) = 0 

=  −
 N   

+ 
  1  

(y − Xβ)J(y − Xβ) = 0 
∂σ2 

Solving  for β̂  and σ̂2  I may  obtain 

2σ2 2σ4 

 

β̂ =    (X JX)−1XJ y and 

σ̂2 = 
(y − XJβ)J(y − X Jβ) 

N 
Although the estimate of vector β using the least squares and maximum likelihood method is same, 
the estimate of σ2 is not equal. In fact σ2 estimate based on the maximum likelihood method is 
biased and the estimate based on the least squares method is unbiased. Finally, note also that second 
derivatives of log with respect to β and σ2 are negative. This assures me that I have actually 
maximized the function. 

Finally, it is possible to obtain log value if uJu is known from the least squares estimation 

procedure.  To  obtain  this,  substitute  unbiased  value  of  σ̂2   in  the  expression  of  log   .   Thus,  we  may 
write 

log L   =    −
N 

log(2π) − 
N 

log 
(uJu) 

− 
N − k 

(uJu) 
 

2 2 N − k 2uJu 

=  −
N 

log(2π) − 
N 

log 
(uJu)

 —
 N − k (7) 

2 2 N − k 2 

N 
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dw =     i=2 , 

 

In expression (7) uJu is sums of squares of residuals and remaining terms contain known constants. 
Thus, it is possible to obtain logarithm of likelihood, if one knows sums of squares, criterion used in 
the least squares method. 

 
Formulae for Various Quantities Reported in Regression Analysis 

I am now in position to summarize various formulae that one normally encounters when using a 
regression program. Here N refers to length of vector y and k refers to length of β vector excluding 
constant term. So k = 4 means that there are four independent variables and N = 24 means that I 
had 24 observed values of dependent variable. 

Mean of Dependent Variable is also called expected value of random variable; 

 
(  ) = 1 or 

ΣN   yi
 

 

Standard Deviation of Dependent Variable is 

yJy 

N − 1 
−

 

yJ1 
 

 

N − 1 

1/2 

= 
h

E (y2) − [E (y)]2 
i1/2 

Sum  of  Squared  Residuals  is  ûJû  =  
ΣN     û2  =  yJy − β̂

J

XJ y.   This  is  the  quantity  minimized  in 
the least squares method. You may prove that the equality is true. 

Standard Error of Regression is 
"  

ûJû #1/2 " ΣN     û2 
#1/2 

 
 

N − k 
=      i=1   i 

N − k 
 

R2 is always between zero and one and is computed 

1 
ûJû/N 

 
or 1 

ΣN     û2/N 
 

  
 
 

 
2 
adj 

It is known that R2 is an increasing function of number of independent variables in the model. 

is an improvement over R2 so as to adjust for the number of variables in the model. It is 
computed as 

1 
ûJû/(N − k − 1)  

or 1 

ΣN     û2/(N − k − 1) 

Durbin-Watson Statistics is commonly used statistics to test whether successive values of random 
noise are related to each other. It is estimated by 

ΣN    (ûi − ûi−1)2
 

and expected value of this statistics for a normally distributed random variable is 2. 

y2/N N 
i=1 

  

R 

E /N 

N 
i=1 û

2 
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Estimated Autocorrelation or correlation among successive observation is 

ΣN     ûiûi−1/(N − 1) 

and expected value of this statistics for a normally distributed random variable is 0. 

F-statistics is used to test whether β vector is significantly different from zero and it is the ratio of 
mean sums of squares due regression to the error mean sums of squares, i.e. 

β̂
J

X Jy/k 

ûJû/(N − k) 
.
 

This statistics is  distributed according  to F-distribution with k and (N − k)  degrees  of freedom. 

Standard Error of Coefficient is    
s ΣN

 

 
 

û2 √   

N − k) 

where aii are diagonal elements of (XJX)−1 matrix. 

 
t-statistics  is 

β̂i βi 
 SECi and this is distributed according to t-distribution with (N − 1) degrees of 

freedom. Note that expected value of βi in above expression is zero. 

Cook’s Distance (CDi) is a measure of the change in the regression coefficents that would occur 

if a ith case is omitted. The measure reveals observations that are most influential in affecting 
estimated regression equation. It is affected by both the case being an outlier on dependent 
variable and on the set of predictors. It is computed as 

(β̂ − β̂(−i))J (XJX)(β̂ − β̂(−i)) 
 CDi = 

k +1  
MSres, 

where  β̂(    i)   is  the  vector  of  estimated  regression  coefficients  with  the  ith  observation  deleted, 
and M Sres is the residual variance for all the observations. It is easier to compute Cook’s D by 

CD  = 
1 

r2 
 

hii ,  

k + 1 i 1 − hii 

where ri is standardized residual when ith observation is excluded and hii is diagonal of 

X i(X JX)−1X J
i 

Standard Error of Prediction If x0 is vector associated with independent variable values and y0 
is value of dependent variable, then the standard error of prediction is given by 

q
var(ŷ0) = 

q

xJ

0(X JX)−1x0s2, 

where s2 is error variance associated with all observations. 

( 
SECi = i=1 

i 

N 
i=1 u

2/N 
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Standard Error of Residuals is 

q
var(ŷ0 − x0

J β) = 
q

s2 [1 + x0
J (XJX)−1x0]. 

Rstudent Residuals are normalized residuals with ith observation excluded and it is computed as 

  ri  
RSTUDENT = 

s 
√

1 − h  
, 

where ri is normalized residual, si is standard error when ith observation is excluded from 
analysis  and  hii  is  diagonal  of  X i(X JX)−1X J

i.   Observations  with  RSTUDENT  larger  than  2 
in absolute value may be considered extreme observation. 

COVRATIO is ratio of determinants of covariances when the ith observation is deleted (denoted by 
s2 

(−i) (X(i)
JX(i))−1  to covariance using all the data, s2(XJX)−1.  That is, 

det 
h

s2 (X(i)
JX(i))−1

i

 

 

 
HAT matrix H  is 

COVRATIO = (−i) . 
det [s2(XJX)−1] 

 

H = X(XJX)−1XJ 

or covariation within an observation to the average covariation. The diagonal entries of this 
matrix (hii) often are used for detecting influential observations. 

DFFITS  measures change  in  fit when ith  observation  is deleted,  or  DFFITS = xi[β − β(−1)]. 

DFBETA is change in estimated coefficients when ith observations is deleted. DFBETAi = β−β(−1). 

VIF If R2 is the multiple correlation coefficient of Xi regressed on the remaining explanatory vari- 
ables, VIFi = 1 2 . 

1−Ri 

Condition Index   If λmax, λ2 · · ·  λk denotes eigenvalues associated with matrix (XJX), then 
 

Condition Index = 
λmax 

. 
λi 

 

Proportions of variance of the kth regression coefficient shared with jth components. If eigenvec- 
tors are represented by vkj and jth eigenvalue as λj, then shared variance kth variable is given 
by 

var(βk 
k 

) = s2 kj . 
j=1 

λj 


	Applications
	There are four broad classes of applications of regression analysis.
	Predictive, for example setting normal quota or baseline sales. We can also use estimated equation to determine “normal” and “abnormal” or outlier observations.
	– Consumers use reference price in comparing alternatives,
	• Decision purpose,
	– Estimating sales, revenues and profits having calibrated demand function.

	Data Requirement
	• Measurement on two or more variables one of which must be dependent.

	Steps in Regression Analysis
	1. Decide on purpose of model and appropriate dependent variable to meet that purpose.
	3. Estimate parameters of regression equation.
	5. Assess appropriateness of assumptions.
	7. Validate estimated regression equation.

	Decision about Independent Variables
	Here are some suggestion for variable(s) to be included in regression analysis as independent variables.
	– Economic, sales are a function of price,
	– Biological, fertilizer usage, generally increase plant growth.
	– Replicate findings for earlier efforts.
	– Bring new insights to earlier efforts.
	• Statistical approaches.
	– Stepwise Backward, add all variables to the model and remove one variable at a time, starting with one that explains least amount of variation in dependent variable.

	Estimating Parameters
	• Method of least squares, or
	• Weighted least squares, or
	We will examine several alternative approaches to estimate parameters including situation where we have only two observations.
	Value of Dependent variable = Constant +
	• Constant (a), Slope (b) and Error (E) are unknown.

	An Illustrative Example - Two observations only.
	Suppose we have two observation (x1, y1) and (x2, y2) or (5,10) and (20,20). These observations graphically can be shown as follows.
	= 0.66
	The resulting equation would be y = 6.67 + .66 × x.
	Slope is negative because
	The resulting equation would be y = 23.33 − .66 × x.
	y

	As you can see from above examples, estimating parameters is nothing more than assigning appropriate values to parameters. Let us re-write our observations again, in somewhat different format and see another alternative approach to obtain parameter es...
	1
	Our regression equation can be written as
	Suppose we added both sides (over all observations) of above equation, the we could write
	Further let us divide both sides by 5 or number of observations, we would get,
	5 5 5 5
	Let us assume that E¯ is zero, which simply says that positive differences and negative differences cancel each other and on an average random noise is zero. Now subtract the average equation from our original equation. That is,
	Suppose  now  we  multiply  both  sides  by  (xi − x¯),  then  we  would  get  a  complicated  expression like
	Let us now take average of both sides and divide by (5 1) or (N 1) where N is number of observations. This would lead to
	N − 1

	We now have to make our second assumption which states that independent variable and error
	to test but one that is required, to derive value of b. With this assumption, we are in position to write estimate  of b or ˆb.  That is,
	We  are  also  assuming  that  xi  − x¯  is  not  equal  to  zero.   That  is,  there  is  some  variation  in
	that each observation is equally weighted. This assumption is satisfied if error variability across observation is about the same.  That is, (yi      yˆi)2  is similar over  all the observations.
	This simplifies to
	This would result in
	2
	0
	0 (1)
	This  would  mean  that  ˆb  =    7
	= 1. Note that our equation in this case would be

	Multiple independent variables
	Nothing much changes, if we had multiple variables. We, however, need to worry about joint variability of independent variables. Consider a situation with two independent variables(x1i
	Here our interest lies with finding best values of a, b1 and b2. To derive these, we could follow above steps. That is, first averaging of both sides, then subtracting the averages and finally multiplying  by  (x1i − x¯1)  and  (x2i − x¯2).  This  wil...
	We would sum both sides of both equations and divide by N 1. Moreover for simplicity, we could make following substitutions.
	N − 1
	N − 1 (1)
	N − 1 (2)
	N − 1 (3)

	These terms are called averages of sums of squared values of cross products (SSCP). These are very useful quantities in various multivariate analysis procedures. After substituting these terms, we may write our earlier equation as
	S
	S (1)

	If  Sx1x2    =/    0,  then  we  need  to  solve  these  two  equations  simultaneously  and  obtain  estimates. There is also a possibility that Sx1x2 = Sx1x1 which would also imply that Sx1x2 = Sx2x2 . This would result in collapse of two unknown to...
	The solution to such matrix equations could be written as

	Assumptions of Regression Equation
	• On  an average  difference  between  the  observed  value  (yi)  and  the  predicted  value  (yˆi)  is zero.
	• The squared differences between the observed value and the predicted value are similar.

	Intercept or Constant
	• Intercept is the point at which the regression intercepts y-axis.

	Slope
	• Change is dependent variable as we change independent variable.

	Interpretation and Assessment
	In this step, I envision explaining obtained results and providing insights about set of vari- ables. This should be both from conceptual point of view as well as statistical perspective. Fur- thermore, statistical measures could either be qualitative...
	2. Decide on probability level at which to reject the null hypothesis. You may recall this as alpha (α) level associated with Type I error. Although the most scientific research tradi- tions use probability level of 0.05, you might be risk-taker and w...
	4. Decide whether to reject or accept null hypothesis. At a particular probability level, if the tabled3 value is less than the computed statistic, then we should reject the null hypothesis and vice versa. There is an alternative for this step. Most c...

	Interpretational Measures
	Let us apply all this to our small problem. First the SAS input.
	SAS output produced following:

	Evaluating Assumptions
	Of the various assumptions in our analysis, following assumption lend to some form test procedure.
	2. Each observation has equal influence on estimated parameters.
	4. If dependent variable is sorted in ascending or descending order, then the estimated residuals  (yi − yˆi) are not related  to each other.
	Let us see how all these things apply to our simple example along with some of statistical derivations. Suppose our regression equation can be written as
	For the first observation, then the predicted value is
	where aˆ and ˆb are used to denote the estimated intercept and slope respectively.  It follows that the  estimated  residual  for  observation  i  is  Eˆi  = yi − (aˆ + ˆbxi)  and  sum  of  squared  residuals  is
	Eˆ2  and the standard deviation,  often denoted  by s is
	Note that under the assumptions of linear regression, it can be shown that
	var(ˆb)    =
	Suppose we want to know the standard error of the predicted value for the first observations, yˆ1,  then  we  determine  the  variance  of yˆ1  and  from  that  we  compute  the  standard  error.  Note that variance of yˆ1  is
	It can be shown that
	and  square  root  of  var(yˆ1)  is  usually  reported  as  the  standard  error  of  prediction.   Note  that
	Similarly it can be shown that
	var(E1) = s
	and  square  root  of  var(Eˆ1)  is  usually  reported  as  the  standard  error  of  residual.   Following output indicates that SAS generates numbers as we would expect.
	Note that in this example,
	where  s2  is  sum  of  squared  residuals  divided  by  (n − 2)  or  3  in  this  case.  Furthermore,  x¯ = 0
	(xi − x¯)2 = 10.  This  results  in
	and square root of 0.22 results in the standard error of prediction of 0.469 for this observation. Similarly,
	= 1.1   1 1 4 
	and square root of this is 0.383. Note that column Student Residual is ratio of  column Residual to Std Err Residual. Note that all  other  remaining  measures  reported  above (Cook’s D, Rstudent etc.) require estimate based on particular observation...
	. It
	aˆ(1) =
	where h11 is diagonal elements of hat matrix or H (see notes above). For the first observation, aˆ(1)  and  ˆb(1)  is  equal  to  0.8  and  0.9  respectively.   Similarly,  RSTUDENT  is  normalized  residual when ith observation is excluded from analy...
	RSTUDENT(1) =
	where s(1) is estimated standard error when the first observation is excluded and that can be estimated by
	1
	n − p − 1

	Then substituting square root of 0.35 in expression of RSTUDENT to obtain
	RSTUDENT(1) = 0.5916√0.4 = 1.069,

	A Realistic Example
	As you might be aware that computer system vary dramatically in prices. My interest in following example is to use regression analysis to predict likely prices that may be charged
	SAS output is as follows:
	Here are my observations in point form.
	• We are explaining about 72% of variation in price by these four variables.
	Price =  −526.65 + 0.833 × CPU + 1.525 × RAM
	Note that the parameter associated with variables CPU and RAM have correct signs and statistically significant (probability of t-statistic is less than 0.05).
	• Consider a desktop with 1 Ghz, with 256 Megabytes of RAM, about 40 gigabytes hard drive and 17 inches MONITOR. For such machine, I should be expected to pay about
	=  −526.65 + 833 + 390.4 + 111.24 + 409.67
	Note that holding everything else same, if we decide to purchase desktop computer with 1.5 Ghz CPU, price of computer would go up by $416.5. A constructed equation like this would be useful tool to understand competitive market behaviour. Let us turn ...
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