Ex Use mettod of mdirect proof (ifneussary)
(1) $\uparrow P \wedge T Q \Rightarrow 7(P \wedge Q)$
(v) $7 P 17 Q$ Premise,
(3) $T(T(P \wedge Q)$) (assume; Mithodof Indirect prool)
(3) $P 1 Q$
(2), Demergans.
(4) P
(3), PuleT.
(5) TP
(1), Pule T
(6) $P \wedge 7 P=F$
(4) (5) , Pule T.
contradictions.
Hence, oun assumption was wring \Rightarrow Valid cenclusion.
(2) $R \rightarrow{ }^{A 1} 7 Q, R V^{16 s}, s^{1 / 3} 7 Q, \stackrel{14}{\rightarrow} Q \Rightarrow C P$.
(1) $R \rightarrow 79$ HI, RuleP
(2) $7 R \vee \neg Q$
(1) Pule T
(3) $S \rightarrow T Q$
H_{3}, pute P
(4) $7 S \vee 79 \quad$ (3, Rule T
(5) $(7 R \vee 7 Q) \wedge(7 S \cup 7 Q)$
(2) (4), fule T
(6) ($7 R 17 S$) $V 7 Q$
(5), RuleT
(7) $7(R \vee S) V 7 Q$
(6), De Margans lau
(8) $(R V S) \rightarrow 7 Q$
(7), Pule T
(9) RVS
H_{2}, Pule P
(id) $7 Q$
18), (9), Modus pmens
(ii) $P \rightarrow Q$

Hu, Rule P
(i) $7 P$
(10), (II), Modus Tollery

With Pethod of Indirect proof.
(1) P (asiume)
(3) $P-1 Q$

Hy, Rulep
(3) Q
(1), (2), Modus, ponens
(4) $\mathrm{S} \rightarrow 7 \varphi \mathrm{H}_{3}$, rure P
(5) 75
(3), (4) Modns Tollens
(6) $R \rightarrow 7 Q$

HI, Puled
(7) $7 R$
(3), (6), Mudus Tollens
(8) 7RA7S
(5) (7), PuleT
(a) 7 (RVS)
(8), De Morgans lan'
(10) RVS H_{2}, Rule
(4) $T(R \cup S) \wedge(R \cup S)$

IF contradiction
\therefore Assumption was wrong. Hence, Ip is ture (anclusim/,

Validity of argunaentsi.
Ex. Test the validity of following arguments:
(1) If two sides of a triangle are equal, then the opposite angles are equal. Two sides of a triangle are equal. Hence, opposite angles are not equal.
ssh p : Two sides of triangle are equal
q: Opposite angles are equal
$H_{1}: p \rightarrow q \quad H_{2}: p \quad c: \sim q$.
(1) p (H 2) Rule P
$(2) p \rightarrow q$ (Hi) Rule p.
$L^{3}-q$
(O)AS, burt. (\#) \therefore Invalid.
(2) I will become an engineer or a mattromatician. I will not become an engineer. Therefore, I will become a mathemat
som: E: I will be come an engineer
M : I will become a mathematician
$H_{1}: E \cup M$
$\mathrm{H}_{2}: \sim E$
C: M.
(1) EVM H_{1}, Ruled
(2) $\sim E \quad \mathrm{H}_{2}$, Pule
(3) M
(1) (2) , Rule $T_{1 /}$
\therefore Valid argument
Ex If the labour market is perfect then the wages of all persons in a particular employment will be equal. But it is always the case that the wages for such persons are not equal. Therefore the labour market is not perfect.
sols L: Labour market is perfect W: Wages of all pars ins in particular employment are equal
$H_{1}: L \rightarrow W$
$H_{2} \sim W$
$C: \sim L$
(1) $L \rightarrow W \quad H_{1}$, Rule P
(2) $\sim W \quad \mathrm{H}_{2}$, Aulel
(3) $\sim L(1),(3)$, Modus Tollens \therefore Valid argument

Ex If A ins the game then B will be happy. If C inns D will be happy. zithen A or C will win. However, if A wins D will not be happy and if C wins. B will not be happy.
So, B inll be happy of D is not happy.
$\operatorname{sen} H_{1}: A \rightarrow B \quad H_{2}: C \rightarrow D \quad H_{3}: A \vee C \quad H_{4}: A \rightarrow \sim D$
$\mathrm{H}_{5}: C \longrightarrow \sim B \quad$ condusix: $B \underset{\sim}{\sim} \sim D$
ii) $C \rightarrow \sim B(H 5)$, pule P
(3) $B \rightarrow \sim C$ (1), contapositive
(3) AVC (H3), RuleP
(4) $N C \rightarrow A$ (3), Rule T
$\begin{array}{ll}\text { (5) } B \rightarrow A & \text { (2), (4), hyp sylh } \\ \text { (6) } A \rightarrow \sim D & \text { (14), puce }\end{array}$
(6) $A \rightarrow \omega D$ (144), pueD
$\begin{array}{ll}\text { (7) } B \rightarrow \sim D & \text { (5) (6), hyp syll }\end{array}$
(8) $A \rightarrow B \quad(H 1)$, fulep
(9) $\sim B \dashv \sim A$
(8), contra posilve
(10) $\sim A \rightarrow C$
(3), Pule T
(iI) $\sim B\lrcorner C$
(13) $C \rightarrow D$
(9) , (10), hyp-sgll
(13) $\sim B \rightarrow D$
(H2) pules
(14) $\sim D \rightarrow B$
(II) (12) hyp syll
(15) $B \rightleftharpoons \sim D$ (7) (4), Rule T II Vild argumenl -

Ex If A works had then either B or C will enjoy themselves.
If B enjuys himself, then A will not work hard. If D enjoys himself, then C ind not. Therefore, if A works hand, D will not enfuy himiself

Sols A A works hard
B: B enjoys himself
C: C enjoys himself
$D: D$ enjoyshimedy
$H_{1}: A \rightarrow(B \vee C) \quad H_{2}: B \rightarrow \sim A \quad H_{B}: D \rightarrow \sim C \quad C: A \rightarrow \sim D$
soln$(1) A$
Pule cP.

$$
+3 A \rightarrow(B \cup C) \quad H 1 \text {, Rule } P
$$

(3) $B V C$
(1) 12 Cmodus pones)
(4) $B \rightarrow \sim A$

H2, Rule p
(s) $\sim B$
(1) (4), Modes tales
(6) C
(3), (5), pule T
(7) $D \rightarrow \infty C$
H_{3}, pule P
(8) $\sim D$
(6), (7), Modes Litters
(9) $A \rightarrow \sim D$
(1) (8), pule T

- Valid argument

Er If Ram misses many classes, he fails. If ram fail, Then he is uneducated. If Ram reads lots of books then hes is not uneducated. Ram misses many classes and reads lots of book. Hence, he is not uneducated
som
P : Ram misses many classes
Q: Ram fails.
R: Nam is not educated.
S : Ram reads lots of book'.
$H_{1}: P \rightarrow Q \quad H_{2}: Q \rightarrow R \quad H_{3}: S \rightarrow \sim R . \quad H_{4}: P \wedge S \quad C: \sim R$
solo, (1) $P A S H_{4}$, Rule P
(3) P (1), Rule T
(3) $P \rightarrow Q$

M1, Rule P
4) Q
(5) $Q \rightarrow R$
(6) R
(7) $S \rightarrow \sim R$
(8) $\sim S$
(9) s
(10) $N S \wedge S=F$
(2), (3), Modus ponem H_{2}, Pule P (4), (5), Modus pmens
H_{3}, Rule P
(6) (H), Modus Lotters
(v) Pule T
(a), (9), PuleT
(contadichion)
\therefore Conclusion does not follow from given premises. Hence, Invalid argument.
En If today is sunday then there is no school. To day is either sunday or a werking day. Today is not a working day. There is no party todby iff etcere is school.
Thergove, there is no panty to day
som S : Today is Sinday Q ' To day is schat R : Today is working
$P:$ There :s party to day
$H_{1}: S \rightarrow 7 Q \quad H_{2}: S \cup R \quad H_{3}: T R \quad H_{4}: T P \rightleftarrows Q \quad C: \neg P$
(1) TR H_{3}, Rulep
(3) SVR H2, RuleP
(3) S
(I) (2), pube T
(4) $S \rightarrow 7 Q \quad H_{1}$, Rule D
(5) $7 Q$
(3) (4), Modus ponens
(6) $\neg P \rightleftharpoons Q \quad \mathrm{Hy}$, Rule P
(7) P
(5), 6 , Pule T.
\therefore Invalid angument

