EXPERIMENT NO. 2

AIM:

To construct drying curve for calcium carbonate.

REQUIRMENTS:

- Petridish
- ❖ hot air oven
- * calcium carbonate
- weighing balance
- spatula *

PRINCIPLE:

To behaviour of drying of solid is explained by drying curve. The time required for drying a batch of weight of martial in a dry air can be estimated with the help of drying curve. Drying is a mass transfer process consists of the removal of water or other solvent by evaporations from a solid, semisolid or liquid. This process is obtained used as final production steps before, packing products.

PROCEDURE:

- ❖ Take a clean Petridish without Lid and consider it's weight as W₁gm
- ❖ Note the area of petridish
- ❖ Take 10gm calcium carbonate in a clean petridish and consider its weight as W₂ gm
- ❖ Prepare slurry by adding water consider it's weight as W₃ gm
- ❖ Heat petridish in hot air oven at temperature of 70°C
- Note down the weight of the sample after every 15 minutes.
- ❖ Continue drying until there is no change in weight of the sample is obtained
- ❖ Determine percentage moisture content and drying rate by using following formula
- ❖ Percentage moisture = W3-W2/W3-W1 × 100

❖ Drying content =W3-W2/area of petridish ×100

REPORT:

- ❖ The construction of drying curves of calcium carbonate was determined
- ❖ The percentage moisture content is =

Calculation:

Weight of empty petridish (w_1) gm =

Weight of empty petridish + sample (w_2) gm =

Weight of empty petridish + sample + water (w₃) gm =

Weight of empty petridish + sample + water + (w_4) gm =

(After drying at different time interval)

MC₁ (moisture content at 0 time) =
$$\frac{W3-W1}{W2-W1}$$

MC₂ (moisture content at 15 minutes time) =
$$\frac{W4-W2}{W2-W1}$$

Average moisture content =
$$\frac{MC1 \cdot MC2}{2}$$

Rate of drying = =
$$\frac{W3-W2}{area \cdot A \ petridish} \times time$$