$$
\begin{aligned}
& (a) \sim(p \rightarrow(q \wedge \gamma)) \\
& \Leftrightarrow \sim(\sim p \vee(q, \wedge \gamma)) \Leftrightarrow(p \wedge(\sim q \vee \sim \gamma))\left(D e M_{\wedge} / g\right.
\end{aligned}
$$

$$
\begin{equation*}
\Leftrightarrow(p \wedge \sim q) \vee(p \wedge \sim \vee) \text { (distibutive prop) } \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
(p \wedge \sim q) & \Rightarrow(p \wedge \sim q) \wedge(r \vee \sim \gamma) \quad(\cdot ン \gamma \text { is missing }) \\
& \Rightarrow \operatorname{po}(\alpha \wedge \gamma) \vee(\alpha \wedge \sim \gamma) \\
& \Rightarrow(p \wedge \sim q \wedge \gamma) \vee(p \wedge \sim q \wedge \sim \gamma)-(2)
\end{aligned}
$$

$$
\begin{aligned}
(p \wedge \sim \gamma) & \Leftrightarrow(p \wedge \sim v) \wedge(q \vee \sim q)(\because q \text { is missing }) \\
& \Rightarrow p(\alpha \wedge q) \vee(\alpha \wedge \sim q) \\
& \Leftrightarrow(p \wedge \sim \gamma \wedge q) \vee(p \wedge \sim \vee \wedge \sim q) \\
& \Leftrightarrow(p \wedge q \wedge \sim \gamma) \vee(p \wedge \sim q \wedge \sim \gamma)-(2)
\end{aligned}
$$

Frons (1); (2) \& (3) , we get

$$
\begin{aligned}
& \sim(p \rightarrow(q \wedge \gamma))(p \wedge \sim q \wedge \gamma) \vee(p \wedge \sim q \wedge \wedge \gamma \gamma) \\
& \vee(p \wedge q \wedge \sim \gamma) \vee(p \wedge \sim q \wedge \sim \gamma) \\
&(p \wedge \sim q \wedge \gamma) \vee(p \wedge q \wedge \sim \gamma) \vee(p \wedge \sim q \\
&\wedge \sim \sim)
\end{aligned}
$$

-Ans
(c) $(p \wedge(\sim \sim(q \wedge v))) \vee(p \rightarrow q)$

$$
\Leftrightarrow[p \wedge(\sim(q \wedge \vee))] \vee(\sim p \vee q)
$$

$$
\Leftrightarrow\{[p \wedge(\sim(q \wedge(\gamma))] \vee \sim p\} \vee q
$$

(Associative bur)

$$
\Leftrightarrow[(p \vee \sim p) \wedge[(\sim(q \wedge v)) \vee \sim p\}] \vee q
$$

($\quad(\sim(q \wedge \gamma) \vee \sim p) \vee q \quad(\because T \wedge A \Leftrightarrow A)$
(2) $\sim q \quad \vee \sim v \vee \sim p \vee q$
$\Rightarrow(\underbrace{}_{T} \underset{\sim}{\sim}) \vee \sim \gamma \vee \sim p \quad$ (associativetaw)

$$
\Leftrightarrow T \vee \sim \gamma \vee \sim p
$$

$$
\begin{aligned}
& \Rightarrow T \\
& \Rightarrow(p \wedge q \wedge \gamma) V(\sim p \wedge q \wedge \gamma) \vee(p \wedge \sim q \wedge \vee) \\
& V(p \wedge q \wedge \sim \gamma) \vee(\sim p \wedge \sim q \wedge v) \vee(\sim p \wedge q \wedge \sim \gamma) \\
& V(p \wedge \sim q \wedge \sim \gamma) \vee(\wedge p \wedge \sim q \wedge \sim \gamma) \text { An }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) }(\sim p \rightarrow \vee) \wedge(p \mapsto q) \\
& (\Rightarrow(p \vee \wedge) \wedge(p \rightarrow q) \wedge(q \rightarrow p) \\
& \Rightarrow(p \vee \vee) \wedge(\sim p \vee q) \wedge(\sim q \vee p)
\end{aligned}
$$

CDo it later using deffenent mettiod which vill be much simpla).

Ex obtain PDNF of $P V(\sim P \wedge \sim q \wedge V)$

$$
\begin{aligned}
& p \vee(\sim p \wedge \sim q \wedge \vee) \\
& p \Leftrightarrow p \wedge(q \vee \sim q) \Leftrightarrow(p \wedge q) \vee(p \wedge \sim q)-(\text { (msentinq })
\end{aligned}
$$

$$
(p \wedge q) E\left(\frac{p \wedge q}{\alpha}\right) N(\gamma \quad \forall \sim \gamma) \Leftrightarrow(\alpha \wedge V) V(d \wedge \sim \gamma)
$$

$$
\begin{equation*}
\Leftrightarrow(p \wedge q \wedge v) v(p \wedge q \wedge \sim r) \tag{2}
\end{equation*}
$$

$$
\therefore p v(\sim p \wedge \sim q \wedge \gamma)
$$

$$
\Leftrightarrow(p \wedge q \wedge \gamma) \cup(p \wedge \sim q \sim \gamma) \vee(p \wedge q \wedge \sim \gamma) \vee(\sim p \wedge \sim q)
$$

$$
\begin{aligned}
& \left.(p \wedge \sim q) \Leftrightarrow \frac{(p \sim q)}{\alpha}\right)(\gamma \vee \sim \gamma)(\Rightarrow(\alpha \wedge \eta) V(\alpha \wedge \sim \gamma) \\
& \Rightarrow(p \wedge \sim q \wedge \gamma) \vee(p \wedge q(N V) \text { (3) } \\
& \therefore p \Leftrightarrow(p \wedge q \wedge \gamma) \vee(p \wedge q \wedge \sim \vee) \vee(p \wedge \sim q \wedge v) \\
& V C p \wedge q^{v} A \infty \\
& \Leftrightarrow(p \wedge q \wedge \vee) \vee(p \wedge \sim q \wedge v) \vee(p \wedge q \wedge \sim \nu){ }^{\prime}
\end{aligned}
$$

Ex(d)

$$
\begin{aligned}
&(p \vee q) \wedge(\varepsilon p \wedge \sim q) \\
& \alpha \alpha \wedge(p) \wedge(\sim q) \\
& \Leftrightarrow(\alpha \wedge(\sim)) \wedge(\sim q) \\
& \Leftrightarrow {[(p \vee q) \wedge(\sim p)] \wedge(\sim q) } \\
& \Leftrightarrow {[(p \wedge \sim p) \vee(q \wedge \sim p)] \wedge(\sim q) } \\
& \Rightarrow(\sim p \wedge q) \wedge(\sim q) \quad(\because F \vee A \Leftrightarrow A) \\
& \Rightarrow \sim p \wedge(q \wedge \sim q) \\
& \Leftrightarrow F(\because F \wedge A \Leftrightarrow F
\end{aligned}
$$

\Rightarrow PDNF does not exists an it is a contradiction.

Ex Write in PONF $(\sim p \wedge q) \vee(P \wedge \sim V)$

$$
\begin{aligned}
& \text { Ex Wnte m pDNF }(\sim p \wedge q \cdot[(p \wedge \sim \gamma) \wedge(q \vee \sim q)] \\
& \Leftrightarrow[(\sim p \wedge q) \wedge(\gamma \vee \sim \gamma)] \vee[(p \wedge \sim \wedge) \\
& \Leftrightarrow(\sim p \wedge q \wedge \gamma) \vee(\sim p \wedge q \wedge \sim \gamma) \vee(p \wedge \sim \gamma \wedge q) \vee(p \wedge \sim \gamma p q) \\
& \Rightarrow(\sim p \wedge q \wedge \gamma) \vee(p \wedge \sim \gamma \wedge q) \vee(\sim p \wedge q \wedge \sim \gamma) \vee(p \wedge \sim q \wedge \sim \vee)
\end{aligned}
$$

Principal Conjunctive Nomal form 1
maxterms: Elementary sum in which vanable and 15 regation do not occur simultaneasly eg maxtams of $p \in q: p \vee \sim q, \sim p \vee q$, $p \cdot v q, \sim p \vee \sim q$. nsvariables $2^{n} \rightarrow$ maxterms.

p	q	$p \vee q$	$\sim p \vee q$	$p \vee \sim q$	$p p \vee \sim q$
T	T	T	T	T	F
T	F	T	F	T	T
F	T	T	T	F	T
F	F	F	T	T	T

Note' Each maxtum has troth value F fer' exactly one combination of truth values: This makes each maxtan unique
PCNF $=$ Product of maxtams (hence PCNF is afro unique)
Using Truth Table:
(a) \forall truth value F, select a maxim which has value F for the same combination of trult values of state ment variables.
b) Take product of neaxturns in step a
$\frac{\xi x}{\text { a }} \sim \sim(P \rightarrow(q /(\gamma))$ PCNE of
(a) $\sim(p \rightarrow(q \wedge \gamma))$
(b) $(\sim p \rightarrow \gamma) \wedge(p \leftrightarrow q)$
(c) $(p \wedge \sim(q \wedge r)) \vee(p \rightarrow q)$
(d) $(p \vee q) \wedge(\sim p \vee \sim q)$
(9) Fran truth table

$$
\begin{aligned}
& 6^{\text {th }} \text { yow } 1 p \vee \sim q \vee r \quad 7^{\text {th }} \text { vow } \rightarrow p \vee q \vee \sim \gamma \\
& 8^{\text {th }} \text {, } w \rightarrow p Y q \vee V^{2} \\
& \therefore \sim(p \rightarrow(q \wedge \gamma)) \Leftrightarrow(p \vee q \vee \gamma) \wedge(p \vee \sim q \vee \gamma) n(p \vee q \vee \sim \gamma) \\
& \wedge(p \vee \sim q \vee \sim r) \wedge(\sim p \vee \wedge q \vee r)
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& (\sim p-\gamma) \wedge(p \vee \neg q) \Rightarrow(\sim p \vee q \sim \gamma) \wedge(\sim p \vee q \vee \vee) \wedge(p \vee \sim q \sim \sim) \\
& \wedge(p \vee \wedge q \vee \gamma) \wedge(p \vee q \vee \vee)
\end{aligned}
$$

$$
\begin{aligned}
\Leftrightarrow & (p \vee q \vee \vee) \wedge(\sim p \vee q \vee r) \wedge(p \vee \sim q \vee \sim) \wedge(\sim p \vee q \vee \vee \vee)) \\
& \wedge(p \vee \sim q \vee \sim \vee)
\end{aligned}
$$

(c) $(p \wedge \sim(q \wedge v)) \cup(p \rightarrow q) \rightarrow$ Tautology hence
$p \subset N E$ does not exist
(d) $(p \vee q) \wedge(\sim p \wedge \sim q) \Leftrightarrow$ contradiction
$\Leftrightarrow(p \vee q) \wedge(\sim p \vee q) \wedge(p \vee \sim q) \wedge(\sim p \sim q)$
Without using twit table:
(1) Remove all $\rightarrow z \rightleftharpoons$ by \sim, v, \wedge only

1) Eliminate \sim before sums \& products using
De Mivgas is law

De Mug ar is law
(3) Apply distributive property.
(4) Drop turns which are taubtogy (ae, pcp)
(5) Introduce the missing variable in elementary sum by taking its sum with contradiction is,
(6) Repeal step 5 ill all elementary sums are
reduced to product of maxtuns
7) Delete identical maxtems
7) Delete identical maxtums.

Ex Find PCNF of

$$
\text { (a) } p \wedge(p \vee \sim q \vee \vee)
$$

In Consider

$$
\begin{aligned}
& P \Leftrightarrow P Y(q / \sim q) \text { (intaducing } q \text {) } \\
& \Leftrightarrow(p \vee q) \wedge(p \vee \sim q) \\
& \begin{array}{l}
\Leftrightarrow(p \vee q) \wedge(p \vee \sim q) \\
\Leftrightarrow[(p \cup q) \vee(\vee \wedge \sim \gamma)] \wedge[(p \vee \sim q) \vee(\vee \wedge \sim \sim)] \text { (intivdeciv) }
\end{array} \\
& \Leftrightarrow(p \vee q \vee \vee) \wedge\left(p \vee q \vee \sim \sim^{\gamma}\right) \wedge(p \vee \sim q \vee \vee \vee) \wedge(p \vee \sim q \mathcal{\sim}) \\
& \Leftrightarrow(p \vee q \vee \vee \perp(p \vee \sim q \vee \gamma) \wedge(p \vee q \vee \vee \gamma \gamma) \wedge(p \vee \sim q \vee \vee \vee)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& (p \wedge \sim(q \wedge \wedge)) \vee(p \rightarrow q) \\
& \Leftrightarrow[p \wedge(\sim q \vee \sim \gamma)] \vee(\sim \sim p \vee q) \\
& \Leftrightarrow(p \vee \alpha) \wedge[(\sim q \vee N) \vee \alpha] \\
& \Leftrightarrow \underset{T}{(p \vee p \vee q) \wedge[(\sim q) \vee \sim r \vee \sim p \vee(q)]} \\
& \Leftrightarrow T \wedge T \Leftrightarrow T \\
& \Rightarrow \text { PCNF does not exist. }
\end{aligned}
$$

$$
\begin{align*}
& \text { (c) }(\sim p \rightarrow r) \wedge(p \leftrightarrow q) \Leftrightarrow(\sim p \rightarrow r) \wedge(p \rightarrow q) \wedge(q \rightarrow p) \\
& \Leftrightarrow(p \vee \gamma) \wedge(\sim p \vee q) \wedge(\sim q \vee p) \tag{1}\\
& {[p \vee r) \Leftrightarrow(p \vee r) \vee(q \wedge \sim q) \text { (intwducing } q \text {) }} \\
& \Leftrightarrow(\alpha \vee q) \wedge(\alpha \vee \sim q) \\
& \Leftrightarrow(p \vee \gamma \vee q) \wedge(p \vee \vee \vee \vee q) \text { (2) } \\
& \Leftrightarrow(p \vee q \vee \gamma) \wedge(p \vee \sim q \vee r) \text { (commulative } p \sim \sim p)
\end{align*}
$$

Smilaly $(\sim p \vee q) \Leftrightarrow(\sim p \vee q \vee \gamma) \wedge(\sim p \vee q \vee \sim \gamma)$

$$
\text { and }(p \vee \sim q) \Leftrightarrow(p \vee \sim q \vee \vee) \wedge(p \vee \sim q \vee \sim \sigma) \text { - } 3
$$

\therefore From (1), (2) and (3), we have $(\sim p \rightarrow r) \wedge(p \leftrightarrow q q) \in(p \vee q \vee r) \wedge(\sim p \vee q \vee r) \wedge(p \vee \sim q \vee \vee)$ $\wedge(\sim p \vee q \vee \sim \gamma) \wedge(p \vee \sim q \vee \sim \vee)$
(d) $(p \vee q) \wedge(\sim p \vee \sim q) \rightarrow$ Aheady in $p C N F$

