18 - ELECTRON RULE

This rule states that "thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d-electrons and the electrons conventionally considered as being supplied by the surrounding ligands equals 18".

•18 electron rule is only applicable for transition metal organometallic compound.

• The main group organometallic compound follows octet rule.

• Square planar complex follows 16- electron rule.

• The complex which follows 16- and 18- electron rule are stable.

• Complex which follows 17- electron rule and 19- electron rule are paramagnetic

• Organometallic compound which follows this configuration $\rightarrow ns^2 np^6 (n - 1)d^{10}$ than complex is stable.

$$2+6+10 = 18 e^{-1}$$

For complex, total no. of electron = the no. of valence electron donated by the metal + number of electron donated by the ligand \pm charge.

Neutral atom method: In this method, metal is taken as in zero oxidation state for counting purpose.

Oxidation state method: First take the oxidation state of the metal. After it, the number of anionic ligands present and finally, overall charge of the complex.

64 10- -24	neutral atom method	oxidation state method
[co] [⊕] Ru	8	6 (Ru ^{+ +})
Ru^{-PPh_3} η^3 - al	llyl 3	4
PPh ₃ 2 PP	h ₃ 4	4
CO	2	2
charg	ge -1	not required
	16 e	16 e
N.Me Fe	8	6 (Fe ⁺⁺)
Fe 2 y	⁵ -Cp 10	12
	18.e	18.e.

Neutral atom method	Oxidation state method	
Fe = 8 = 8	$Fe = 6 (Fe^{++})$	
2Cp = 5 = 10	2Cp = 12	
18 e ⁻	18 e ⁻	

Ferrocene follows 18 electron rule

Mn(CO)5CH3

Neutral atomic method: 7 + 10 + 1 = 18 electron (Mn) Oxidation state method: 6 + 2 + 10 = 18 electron (Mn⁺)

Ni(CO)₄

Valence electrons of Ni = 10 Electrons donated by four CO ligands = $2 \times 4 = 8$ Thus, total outer electrons in Ni(CO)₄ = 10 + 8 = 18 electrons Hence, Ni(CO)₄ exists as stable compound.

Co(CO)₄

Valence electrons of Co

= 9

Electrons donated by four CO ligands $= 2 \times 4 = 8$ Thus, total outer electrons in Co(CO)₄ = 9 + 8 = 17 electrons

 $Co(CO)_4$ doesn't obey 18- electron rule, and hence $Co(CO)_4$ is unstable compound.

For bridging, Fe: Fe^o + 3 terminal CO + 2μ CO + 2 Fe-Fe bond = 8e⁻ + (3 × 2) + (2 × 1) + (2 × 1)

= 18 electrons

For Unique Fe: $Fe^{o} + 4$ terminal CO + 2 Fe-Fe bond = $8e^{-} + (4 \times 2) + (2 \times 1) = 18$ electrns

HMn(CO) ₅	Neutral atom method		Oxidation state method			
]	Mn		7e	Mn ⁺	6e
]	Н		1 <i>e</i>	H^{-}	2e
	!	5CO		10e	5CO	10e
	-			18e		18e
	Cr		6e		Cr	6e
(Ψ)	2C6H		12e		2C6H6	12e
Cr	200.	0	18e			18e
N. (60)	Mn		7e		Mn	7e
$(OC)_5 - Mn - Mn(CO)_5$	Mn-	-Mn			Mn—Mn	1e
	5CO		10e		5CO	10e
			18e			18e
1	Ni ⁺⁻	+	0.		Ni	10e
Ni	2C ₃ l		8e 8e		2C ₃ H ₅	6e
A.	2031	15	16e			16e
$(OC)_3Co - Co(CO)_3$	Co		9e		Со	9e
	Co-	-Co	1e		Co—Co	1e
Č	3CO		6e		3CO	6e
	2(µ-0	CO)	2e		2(µ-CO)	2e
0			18e			18e

) [PtCl ₄]	Pt ⁺⁺	8e	Pt	10e
	4C1-	8e	4Cl	4e
			Charge	2e
		16e		16e
[Cr(CO)6]	Cr	6e	Cr	6e
	600	12e	6C0	12e
		18e		18e
[Fe(CO) ₅]	Fe	8e	Fe	8e
	5CO	10e	5C0	10e
		18e		18e
0 0				
	Fe	8e	Fe	8e
C C	3CO	6e	3CO	6e
$(OC)_3 Fe - Fe(CO)_3$	Fe—Fe	1e	Fe—Fe	1 <i>e</i>
	3(µ-CO)) 3e	3(µ-CO)	Зе
°C/	s <u></u>	18e		18e
[Co(CO) ₄] [⊖]	Со	9e	Со	9e
	4CO	8e	4CO	8e
	Charge	1e	Charge	1e
	1. <u></u>	18e		18e
$[Co(NH_3)_6]^{+++}$	Со	9e	Co	9e
	6NH ₃	12e	6NH ₃	12e
	Charge	– 3e	Charge	- 3e
		18 <i>e</i>		18e
		<u></u>	1	

Applications of 18 electron rule

- In the determination of the total number of metal-metal bonds
- Used to predict the stability of various organometallic compounds.
- To know the reactivity of transition elements.
- In the determination of the formula of organometallic compounds.

Limitations of 18 electron rule

- 16 electron compounds (both high spin octahedral and low spin square planar) fail to obey this rule.
- High spin compounds usually do not follow this rule as it lacks vacant orbitals in order to gain electrons in their valence shell.

- The metal complexes containing bulky ligands violate the 18 electron rule by interfering with the ligands for bonding.
- π -donating ligands do not follow the 18 electron rule.
- When an organometallic compound consists of more than 6 metal atoms, the 18 electron rule does not apply.

WADE RULE: Ken Wade developed a method for the prediction of shapes of boranes clusters or carboranes or other clusters which is known as Polyhedral Skeletal Electron Pair Theory (PSEPT). In this rule, prediction of borane clusters done by *total electron count*. Example-

Os₅(**CO**)₁₆: The Os₅ skeleton is an irregular trigonal bipyramidal. The structure can not be explained on the basis of 18-electron rule and two electron Os–Os bond. But it can be explained on the basis of *Wade Rule*. In this case, two equatorial $Os(CO)_3$ metal atoms (I-Os & II-Os) would be assigned 18-electron configuration. The axial (III-Os & IV-Os) will represent 17-electrons while the Os₅ would have 20-electrons.

Os₆(**CO**)₁₈: The Os₆ skeleton has been found as a bicapped tetrahedral structure. All the CO-groups are terminal.

Os₇(**CO**)₂₁: It has a capped octahedral skeleton. Each Os has (CO)₃ terminal.

