

APOPTOSIS

Introduction

Apoptosis can be defined as a pathway of cell death that induced by tightly regulated intracellular program.

Its an energy dependent biochemical mechanism.

WHERE can APOPTOSIS be ENCOUNTERED ?

- ... Growth of Embrio
- ... Tissue Homeostasis
- ... Immunology
- ... Chronic viral diseases
- ... Neurodegenerative diseases
- ... Insuline-dependent Diabetes
- ... Development and Treatment of Malignancies

Importance of Apoptosis

Apoptosis is a necessary part of normal developmental process, specifically helps in proper development of organs, pattern formation and digitation.

Apoptosis: Historical perspective

- 1842 Carl Vogt: Principle of apoptosis
- 1885 Walther Flemming: Process of programmed cell death
- 1965 John Foxton Ross Kerr : distinguish apoptosis from
 - traumatic cell death by electron microscopy
- 2002 Nobel Prize in medicine

NATURE REWIEWS I Molecular Cell Biology Macmillan Magazines Ltd, Vol-2 2006

Phenotype of Cellular Apoptosis

- Membrane blebbing but no loss of integrity
- > Aggregation of chromatin at the nuclear membrane.
- Begins with shrinkage of cytoplasm and condensation of nucleus.
- Ends with fragmentation of cell into apoptotic bodies

Source: http://www.utm.utoronto.ca/

Biochemical markers of Apoptosis

- 1) A number of activities take place
- Occupation of death receptors
- Dimerization of Bcl-2 family members
- Release of cytochrome c
- Activation of caspases
- Activation of DNAse
- 2) Translocation of phosphatidylserine
- 3) ATP-dependency
- 4) Internucleosomal DNA fragmentation (ladder pattern)
- 5) No inflammation

The intrinsic apoptotic pathway

Figure 9-29 The Biology of Cancer (© Garland Science 2007)

Death receptor- mediated apoptosis

Regulators of apoptosis

Innibitors of Apoptosis

Physiologic Inhibitors

- 1. Growth factors
- 2. Extracellular matrix
- 3. CD40 ligand
- 4. Neutral amino acids
- 5. Zinc
- 6. Estrogen
- 7. Androgens

Viral genes

- 1. Adenovirus E1B
- 2. Baculovirus p35
- 3. Baculovirus IAP
- Cowpox virus crmA
- 5. Epstein-Barr virus BHRF1, LMP-1
- 6. African swine fever virus LMW5-HL
- 7. Herpesvirus γ1 34.5

Pharmacological agents

- 1. Calpain inhibitors
- 2. Cysteine protease inhibitors
- 3. Tumor promoters PMA Phenobarbital
 - α-Hexachlorocyclohexane

Inducers of Apoptosis

Physiologic activators

- 1. TNF family
 - Fas ligand
- Transforming growth factor β
- 3. Neurotransmitters Glutamate Dopamine *N*-methyl-D-aspartate
- 4. Growth factor withdrawal
- 5. Loss of matrix attachment
- 6. Calcium
- 7. Glucocorticoids

Damage-related inducers

- 1. Heat shock
- 2. Viral infection
- 3. Bacterial toxins
- 4. Oncogenes myc, rel, E1A
- 5. Tumor suppressors p53
- 6. Cytolytic T cells
- 7. Oxidants
- 8. Free radicals
- Nutrient deprivation antimetabolites

Therapy-associated agents

1. Chemotherapeutic drugs

Cisplatin, doxorubicin,

- Toxins 1. Ethanol

 - 2. β-amyloid peptide

Fig. 2. A partial list of the agents that have been reported to induce or inhibit apoptosis.

- A arabinoside, nitrogen
 - trexate, vincristine 2. Gamma radiation
 - 2. UN radiation
 - 3. UV radiation

Comparison between two forms of cell death, apoptosis and necrosis

Fig. 1 Sequence of ultrastructural changes in apoptosis (2–6) and necrosis (7 and 8). A normal cell is shown in stylized form at 1. Early apoptosis (2) is characterized by compaction and segregation of chromatin in sharply circumscribed masses that abut on the inner surface of the nuclear envelope, convolution of the nuclear outline, condensation of the cytoplasm with preservation of the integrity of organelles, and the beginning of convolution of the cull surface. In the next phase (3), the nucleus fragments and further condensation of the cytoplasm is associated with extensive cell surface protrusion, followed by separation of the surface protuberances to produce membrane-bounded apoptotic bodies of varying size and composition. These bodies are phagocytosed (4) by nearby cells and are degraded by lysosomal enzymes (5), being rapidly reduced to nondescript residues within telolysosomes (6). In the irreversibly injured cell, the onset of necrosis (7) is manifest as irregular clumping of chromatin without radical change in its distribution, gross swelling of mitochondria with the appearance of flocculent densities in their matrices, dissolution of ribosomes, and focal rupture of membranes. At a more advanced stage of this process (8), all cellular components disintegrate. In tissues, the overall configuration of the cell sitesolution eventually ensues.

Table 9.3 Apoptosis versus necrosis

	Apoptosis	Necrosis
Provoking stimuli		
	programmed tissue remodeling	metabolic stresses
	maintenance of cell pool size	absence of nutrients
	genomic damage	changes in pH, temperature
	metabolic derangement	hypoxia, anoxia
	imbalances in signaling nathways	
Morphological changes		
Affected cells	individual calls	analysis of colle
Affected cells	individual cells	groups of cells
Cell volume	decreased	increased
Chromatin	condensed	fragmented
Lysosomes	unaffected	abnormal
Mitochondria	morphologically normal initially	morphologically aberrant
Inflammatory response	none	marked
Cell fate	apoptotic bodies consumed by neighboring cells	lysis
Molecular changes		
Gene activity	required for program	not needed
Chromosomal DNA	cleaved at specific sites	random cleavage
Intracellular calcium	increased	unaffected
lon numps	continue to function	lost

Adapted from R.J.B. King, Cancer Biology, 2nd ed. Harlow, UK: Pearson Education, 2000.

Table 9-3 The Biology of Cancer (© Garland Science 2007)

Apoptosis: Role in Diseases

Preclampsia of Pregnancy